

Mayari

MATHS

For Class Four

Project Director

Ghulam Shabeer Attari

Project Manager

Muhammad Saleem Qadri

Writer

S.M Akram Naqvi

Translator

Muhammad Ali Veesar

Composer

Imran Ali Mirani

Designer

Asif Ali Lakhvi

Zam Zam Science Publications
Karachi Pakistan

mehran_series@yahoo.com

NATURAL NUMBERS

We have learnt about the number up to Lac In previous class.
Now, we Exercise it.

Activity 1: Write down the given numbers into words.

1 25495 2 15901 3 19052 4 2409 5 24951

6 33671 7 95252 8 1215 9 95252 10 10025

Activity 2: Find the number place value of underlined digits.

1 35675 2 19952 3 64659 4 152134 5 92049

6 99524 7 25379 8 25675 9 67952 10 73745

11 89254 12 75279 13 35606 14 71665 15 62918

Activity 3: Write the number into digits.

1 Four lac fifty thousand Nine hundred and one.	2 Six Lac fifty two thousand and two
3 Sixty six thousand four hundred two	4 Seven thousand Nine hundred fourteen
5 Eighty eight thousands.	6 Fifteen thousand four hundred Nineteen
7 Nine lac four hundred Ninety one	8 Fifty two thousand eight hundred fifty five
9 Eighty three thousand and four	10 Sixty two thousand seven hundred Twenty
11 Fourty thousand nine hundred & fifty eight	12 Ninety two thousand and Two.

READ AND PRACTICE NUMBERS UP TO ONE CRORE

We know that,

The least number of 6 digit is **100000**

and the greatest number of 6 digit is **999999**

Ten lac	Lac	Ten thousands	Thousands	Hundreds	Tens	Units
1	0	0	0	0	0	0

So that the learnt number of seven digit is (1000000) Ten Lac, it becomes the greatest number of seven digits is (9999999) in next, eight digit number is said to be one crore (10000000).

Crore	Ten lac	Lac	Ten thousands	Thousands	Hundreds	Tens	Units
1	0	0	0	0	0	0	0

READING OF NUMBER UPTO ONE CRORE:

Seven crore fifty four lac fifty seven thousands one hundred Ninety
= 75457195 AS

Eighty Nine Lac fifty two thousand one hundred five = (8952105)
= 8952105

READING AND WRITING IN MILLION AND BILLION:

Example

= 86,41,254

Ten lac	Lac	Ten thousands	Thousands	Hundreds	Tens	Units
8	6	4	1	2	5	4

Eight million six hundred forty one thousand two hundred fifty four.

Example

= 91,66,512

Ten lac	Lac	Ten thousands	Thousands	Hundreds	Tens	Units
9	1	6	6	5	1	2

Nine million one hundred sixty six thousand five hundred Twelve.

ROMAN NUMBERS:

The number that are written in Roman Style are called Roman number Roman number were used before arabic number Roman shown some English letter through these letter we use can identify the exact number

1 = I	5 = V	10 = X	50 = L	100 = C	500 = D	1000 = M
-------	-------	--------	--------	---------	---------	----------

ROMAN NUMBERS:

1	I	21	XXI	41	XLI	61	LXI	81	LXXXI
2	II	22	XXII	42	XLII	62	LXII	82	LXXXII
3	III	23	XXIII	43	XLIII	63	LXIII	83	LXXXIII
4	IV	24	XXIV	44	XLIV	64	LXIV	84	LXXXIV
5	V	25	XXV	45	XLV	65	LXV	85	LXXXV
6	VI	26	XXVI	46	XLVI	66	LXVI	86	LXXXVI
7	VII	27	XXVII	47	XLVII	67	LXVII	87	LXXXVII
8	VIII	28	XXVIII	48	XLVIII	68	LXVIII	88	LXXXVIII
9	IX	29	XXIX	49	XLIX	69	LXIX	89	LXXXIX
10	X	30	XXX	50	L	70	LXX	90	XC
11	XI	31	XXXI	51	LI	71	LXXI	91	XCI
12	XII	32	XXXII	52	LII	72	LXXII	92	XCII
13	XIII	33	XXXIII	53	LIII	73	LXXIII	93	XCIII
14	XIV	34	XXXIV	54	LIV	74	LXXIV	94	XCIV
15	XV	35	XXXV	55	LV	75	LXXV	95	XCV
16	XVI	36	XXXVI	56	LVI	76	LXXVI	96	XCVI
17	XVII	37	XXXVII	57	VLII	77	LXXVII	97	XCVII
18	XVIII	38	XXXVIII	58	LVIII	78	LXXVIII	98	XCVIII
19	XIX	39	XXXIX	59	LIX	79	LXXIX	99	XCIX
20	XX	40	XL	60	LX	80	LXXX	100	C

EXERCISE 1.1

i Rewrite the numbers in descriptive form.

1 3,152,567

Three million, one hundred fifty tow thousand,five hundred sixty seven

2 3,550,012

Three million, five hundred fifty thousand twelve.

3 **4,144,752**

Four million, one hundred forty four thousand seven hundred fifty two.

5 **802,295**

Eight hundred two thousand two hundred ninety five.

7 **6,785,812**

Six million seven hundred eighty five thousand, eight hundred twelve.

9 **729,616**

Seven hundred twenty nine thousand six hundred sixteen.

11 **8,731,901**

Eight million, seveb hundred thirty one thousand nine hundred one.

4 **5,677,526**

Five million six hundred seventy seven thousand five hundred twenty six.

6 **952,452**

Nine hundred fifty two thousand four hundred fifty two.

8 **8,725,129**

Eight million, seven hundred twenty five thousand, one hundred twenty nine.

10 **3,440,031**

Three million, four hundred forty thousand thirty one.

12 **679,522**

Six hundred seventy nine thousand five hundred fifty two.

ii Write the numbers in Tabular form.

1 Eleven million two hundred fifty thousand Nine hundred one.

Ans: **11,250,901**

2 Four million four hundred thirty Nine thousand four hundred.

Ans: **4439,400**

3 Three hundred eighty six thousand eight hundred Ninety Nine.

Ans: **386,899**

4 Four million, four hundred sixty three thousand, two hundred four.

Ans: **4463204**

5 Twelve thousand, Nine Hundred one

Ans: **12901**

6 Sixty two thousand four hundred seventy eight.

Ans: **62478**

7 Two million two hundred one.

Ans: **2000,201**

9 Four million, two hundred fifteen thousand four hundred two.

Ans: **4,215,402**

8 Thirty Nine million, Nine hundred, twenty one Thousand thirty five.

Ans: **39921035**

10 One million four hundred sixty one thousand.

Ans: **1,461,000**

iii Write the number place value of under lined digits.

1 **925925**

2 **1457892**

3 **3009252**

4 **4675124**

Ans:5000

Ans:400000

Ans:3000000

Ans: 70000

5 **9787592**

6 **58315**

7 **7957524**

8 **3450002**

Ans:500

Ans:5

Ans:20

Ans: 400000

9 **459291**

10 **253790**

11 **453171**

12 **8029439**

Ans:50000

Ans:3000

Ans:50000

Ans: 9000

Numbers are read and written in different languages and one written in different ways. Now a day numbers are shown in english but arabic numbers are also used.

English style	Urdu Style	Sindhi Style
1	۱	۱
2	۲	۲
3	۳	۳
4	۴	۴
5	۵	۵

English style	Urdu Style	Sindhi Style
6	۶	۶
7	۷	۷
8	۸	۸
9	۹	۹
10	۱۰	۱۰

Activity: Write the give numbers in urdu font.

934521

۹۳۴۵۲۱

3150456

۳۱۵۰۴۵۶

459792

۴۵۹۷۹۲

EXERCISE 1.2

i Write the following number in Urdu style.

1 9545921	2 7675490	3 1758952	4 725923
Ans: ۹۵۴۵۹۲۱	Ans: ۷۶۷۵۴۹۰	Ans: ۱۷۵۸۹۵۲	Ans: ۷۲۵۹۲۳

5 1560792	6 895730	7 3461032	8 345992
Ans: ۱۵۶۰۷۹۲	Ans: ۸۹۵۷۳۰	Ans: ۳۴۶۱۰۳۲	Ans: ۳۴۵۹۹۲

9 3390221	10 4455607	11 4603721	12 4037507
Ans: ۳۳۹۰۲۲۱	Ans: ۴۴۵۵۶۰۷	Ans: ۴۶۰۳۷۲۱	Ans: ۴۰۳۷۵۰۷

ii Write the following numbers in Arabic style.

1 ۱۲۲۷۹۸	2 ۱۰۲۲۲۳	3 ۵۶۷۸۹۰	4 ۲۰۲۰۷۰۷
Ans: ۱۲۲۷۹۸	Ans: ۱۰۲۲۲۳	Ans: ۵۶۷۸۹۰	Ans: ۲۰۲۰۷۰۷

5 ۱۱۲۲۳۳	6 ۷۵۹۵۷۸	7 ۷۷۸۸۹۹	8 ۱۷۵۰۶۰
Ans: ۱۱۲۲۳۳	Ans: ۷۵۹۵۷۸	Ans: ۷۷۸۸۹۹	Ans: ۱۷۵۰۶۰

iii Write the following number in Sindhi style.

1 ۹۵۹۲۱۰	2 ۴۹۵۲۱	3 ۳۸۶۷۵۵	4 ۹۷۸۷۵۹
Ans: ۹۵۹۲۱۰	Ans: ۴۹۵۲۱	Ans: ۳۸۶۷۵۵	Ans: ۹۷۸۷۵۹

5 ۵۱۳۹۲۹	6 ۳۵۷۸۸۱۰	7 ۱۵۴۹۷۲	8 ۹۴۵۹۲۱
Ans: ۵۱۳۹۲۹	Ans: ۳۵۷۸۸۱۰	Ans: ۱۵۴۹۷۲	Ans: ۹۴۵۹۲۱

9 ۱۹۳۹۲۵	10 ۴۵۸۱۷۵	11 ۱۶۵۹۷۹	12 ۹۵۹۵۲۱
Ans: ۱۹۳۹۲۵	Ans: ۴۵۸۱۷۵	Ans: ۱۶۵۹۷۹	Ans: ۹۵۹۵۲۱

iv Write the following numbers in English Style.

1 ۵۶۷۸۰۹	2 ۷۸۹۰	3 ۱۲۶۷۹	4 ۱۹۴۰
Ans: 567809	Ans: 7890	Ans: 12679	Ans: 1940

5 ۴۴۳۴۷	6 ۸۹۷۶۵	7 ۳۴۰۶۷	8 ۴۰۶۷۸
Ans: 44347	Ans: 89765	Ans: 34567	Ans: 45678

v Write the following numbers in Roman style.

1 40	2 69	3 26	4 79
Ans: XL	Ans: LXIX	Ans: XXVI	Ans: LXXIX

5 50	6 37	7 30	8 74
Ans: L	Ans: XXXVII	Ans: XXX	Ans: LXXIV

9 65	10 71	11 99	12 100
Ans: LXV	Ans: LXXI	Ans: XCIX	Ans: C

CONCEPT OF FACTORS BY DIVISION:

If a number can divide an other number and remainder is zero the division called factor of greatest common Division.

Example: Divide 256 by 2

Solution $256 \div 2$

$$\begin{array}{r} 128 \\ 2 \overline{)256} \\ 2 \\ \hline 5 \\ 4 \\ \hline 16 \\ 16 \\ \hline 0 \end{array}$$

So that 2 can divide 256 and 128 are divisions of 256. If 256 is divided by 3 then remainder is 1.

Solution

$$\begin{array}{r} 85 \\ 3 \overline{)256} \\ 24 \\ \hline 16 \\ 15 \\ \hline 1 \end{array}$$

256 can not be divided by 3 because remainder becomes 1 so that we can say that 3 can not divide to 256.

If 256 are divided by 4 them remainder is zero.

$$\begin{array}{r} 64 \\ 4 \overline{)256} \\ 24 \\ \hline 16 \\ 16 \\ \hline 0 \end{array}$$

Divide 256 is the remainder is zero.

Example: Find the factors by multiplication 55, 36, 72, 48, 12

Solution Dividor of 12 are 1, 2, 3, 4, 6, 12

Dividor of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

Dividor of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36

Dividor of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Dividor of 55 are 1, 5, 11, 55

FUNCTION OF DIVISION:

If a number is divided by any number then remainder become zero the number division. The divisor number will be the factor of that number.

DIVISION WITH 2:

If the unit of any number are 0,2,4,6 and 8 then the numbers divisible by 2.

Example: 104, 96, 48, 24, 28, 76, 68, 100 be divisible by 2.

IMPORTANT INFORMATION

The numbers which are divisible by 2 are called Even number.

The numbers that are divide by 3.

If sum of any numbers can be divided by 3. Then the number is also divided by 3.

Example: Divide 279 by 3

Sum of digits $2 + 7 + 9 = 18$

18 can be divided by 3 so that 279 can be divided by 3.

Example: Which number is divisible by 3.

$$\begin{array}{r} 93 \\ 3 \overline{)279} \\ 27 \\ \hline 9 \\ 9 \\ \hline 0 \end{array}$$

Example: Which numbers can be divided by 3.

(i) 3435 (ii) 281 (iii) 45252

Solution (i) 3435 Sum of digits $= 15 = 3 + 4 + 3 + 5$

15 can be divided 3 so that 3435 in also divisible by 3

Solution (ii) 281 Sum of digits $= 11 = 2 + 8 + 1$

11 can not be divided by 3 so that 281 is not divisible by 3.

Solution (iii) 45252 Sum of digits $= 18 = 4 + 5 + 2 + 5 + 2$

18 can be divided by 3 so that 45252 can divided by 3.

DIVISIBLE BY 5:

Such number that has units 0 or 5 then that number can be divided by 5.

Example: 110, 105, 100, 90, 55, 50

IMPORTANT INFORMATION:

- The numbers that are divisible by 2 and 3. Then these are divisible by 6.
- If the unit or term of a number is divisible by 4 then number is divisible by 4.
- The number that is divisible by 2 and 5 then it is divisible by 10.
- If the units term or hundreds of any number is divisible by 8 then number is divisible by 8.

EXERCISE 2.1

i Tell the factors of the following.

1 24

2 36

Ans: 1, 2, 3, 4, 6, 8, 12, 24.

Ans: 1, 2, 3, 4, 6, 9, 12, 18, 36.

3 48

4 81

Ans: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.

Ans: 1, 3, 9, 27, 81.

5 60

6 75

Ans: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Ans: 1, 3, 5, 15, 25, 75

7 66

8 69

Ans: 1, 2, 3, 6, 11, 22, 33, 66.

Ans: 1, 3, 23, 69

9 49

10 96

1, 7, 49.

Ans: 1,2,3,4,6,8,12,16,24,32,48,96.

ii Find out the numbers which are divisible by 3.

1 637 2 47293 3 728 4 157224 5 45261

6 8364 7 728 8 535 9 2109 10 36480

11 79210 12 81972 13 51369 14 2159 15 31250

Ans: 4 157224 5 45261 6 8364 9 2109

10 36480 12 81972 13 51369

The above given numbers are divisible by 3.

iii Separate the number which are divisible by 5.

1 4510 2 1993 3 21595 4 57721 5 10005

6 32759 7 2450 8 1986 9 2093 10 2125

11 15190 12 19953 13 18102 14 2150 15 1000

Ans:

1 4510 3 21595 5 10005 7 2450

10 2125 11 15190 14 2150 15 1000

The above number which are divisible by 5.

iv Find the exact of given number in blanks.

	Divisible Numbers	Divisible by 2	Divisible by 3	Divisible by 5
1	15024	7512	5008	-
2	135	-	45	27
3	2736	1368	912	-
4	457120	228560	-	91424
5	48525	-	16175	9705
6	15858	7929	5286	-
7	24480	12240	8160	4896
8	9936	4968	3312	-
9	1008	504	336	-
10	234660	117330	78220	46932
11	1025	-	-	205
12	263	-	-	-
13	99250	49625	-	19850

PRIME AND COMPOSITE NUMBERS:

Prime Numbers:

The number having two divisors (one and itself) are called prime Number.

Example: 1,2,3,5,7,11,13,19....

Composite Numbers

The number whose are more than two divisors are called compound Numbers.

Example: 6,8,9,10,12,15,16,18

Activity:

Separate the prime number and composite number.

Numbers	Prime Number	Compound Number	Number	Prime Number	Compound Number
148	C		231		
490	C		341		
159	P		218		
117	P		129		

FACTORS

The division of any number that are written in form of multiplication are known as factors.

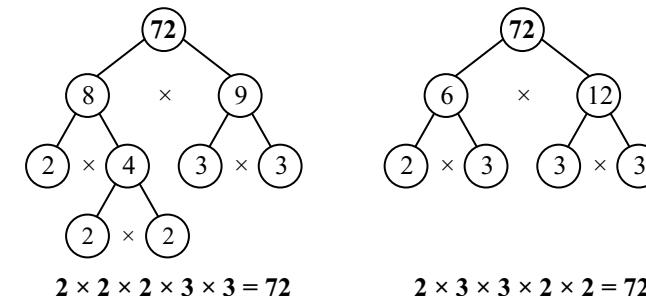
Factors of 30 are:

$$\begin{array}{c}
 2 \mid 30 \\
 \hline
 3 \mid 15 \\
 \hline
 5
 \end{array}
 \quad
 \begin{array}{l}
 1 \times 30 \\
 2 \times 15 \\
 3 \times 10 \\
 5 \times 6 \\
 6 \times 5 \\
 \hline
 2 \times 3 \times 5 = 30
 \end{array}$$

MULTIPLICATION OF PRIME FACTORS

If a factor is in the form of multiplication that is called multiplicative Factor.

Example: Find the multiplicative factors of 50.


$$\begin{array}{c|c}
 2 & 50 \\
 \hline
 5 & 25 \\
 \hline
 & 5
 \end{array}$$

Solution: $2 \times 5 \times 5 = 50$

We can prime factor by the process of Division, when we divide any number by prime number if result is composite number then it is divided by Prime Factor, This process is going on till remainder becomes one.

FACTORS BY FACTOR TREE METHOD

Example: Draw Factor tree of 72

EXERCISE 2.2

i Separate the prime and composite numbers.

	Numbers	Prime number	Composite numbers		Numbers	Prime number	Composite numbers
1	71, 69, 85	71,	69, 85	2	129, 131, 91	129, 131	91
3	17, 19, 21	17, 19	21	4	223, 100	223	100
5	12, 171	$\times 12$	171	6	68, 0	0	68
7	21, 484	$\times 21,$	484	8	65, 02	02	65
9	510, 33	$\times 510, 33$	32	10	87, 10	1087	10

ii Find the possible factors of following numbers.

1 24
Sol:
$$\begin{array}{c|cc} 2 & 24 \\ \hline 2 & 12 \\ 2 & 6 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 2 \times 3 = 24$

2 36
Sol:
$$\begin{array}{c|cc} 2 & 36 \\ \hline 2 & 18 \\ 3 & 9 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 3 \times 3 = 36$

3 48
Sol:
$$\begin{array}{c|cc} 2 & 48 \\ \hline 2 & 24 \\ 2 & 12 \\ 2 & 6 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 2 \times 2 \times 3 = 48$

4 81
Sol:
$$\begin{array}{c|cc} 3 & 81 \\ \hline 3 & 27 \\ 3 & 9 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: $3 \times 3 \times 3 \times 3 = 81$

5 60
Sol:
$$\begin{array}{c|cc} 2 & 60 \\ \hline 2 & 30 \\ 3 & 15 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 3 \times 5 = 60$

6 75
Sol:
$$\begin{array}{c|cc} 3 & 75 \\ \hline 5 & 25 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: $3 \times 5 \times 5 = 75$

7 596
Sol:
$$\begin{array}{c|cc} 2 & 596 \\ \hline 2 & 298 \\ 149 & 149 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 149 = 596$

8 315
Sol:
$$\begin{array}{c|cc} 3 & 315 \\ \hline 3 & 105 \\ 5 & 35 \\ 7 & 7 \\ \hline 1 & \end{array}$$

Ans: $3 \times 3 \times 5 \times 7 = 315$

9 400
Sol:
$$\begin{array}{c|cc} 2 & 400 \\ \hline 2 & 200 \\ 2 & 100 \\ 2 & 50 \\ 5 & 25 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 2 \times 2 \times 5 \times 5 = 400$

10 124
Sol:
$$\begin{array}{c|cc} 2 & 124 \\ \hline 2 & 62 \\ 31 & 31 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 31 = 124$

11 692
Sol:
$$\begin{array}{c|cc} 2 & 692 \\ \hline 2 & 346 \\ 173 & 173 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 173 = 315$

12 720
Sol:
$$\begin{array}{c|cc} 2 & 720 \\ \hline 2 & 360 \\ 2 & 180 \\ 2 & 90 \\ 3 & 45 \\ 3 & 15 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 720$

13 121

Sol:
$$\begin{array}{c|cc} 11 & 121 \\ \hline 11 & 11 \\ \hline 1 & \end{array}$$

Ans: $11 \times 11 = 121$

14 819

Sol:
$$\begin{array}{c|cc} 3 & 819 \\ \hline 3 & 273 \\ 7 & 91 \\ 13 & 13 \\ \hline 1 & \end{array}$$

Ans: $3 \times 3 \times 7 \times 13 = 819$

15 33

Sol:
$$\begin{array}{c|cc} 3 & 33 \\ \hline 11 & 11 \\ \hline 1 & \end{array}$$

Ans: $3 \times 11 = 33$

iii Find the prime factors of following.

1 24

Sol:
$$\begin{array}{c|cc} 2 & 24 \\ \hline 2 & 12 \\ 2 & 6 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 24 is $2 \times 2 \times 2 \times 3$

2 36

Sol:
$$\begin{array}{c|cc} 2 & 36 \\ \hline 2 & 18 \\ 3 & 9 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 36 is $2 \times 2 \times 3 \times 3$

3 48

Sol:
$$\begin{array}{c|cc} 2 & 48 \\ \hline 2 & 24 \\ 2 & 12 \\ 3 & 6 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 48 is $2 \times 2 \times 2 \times 3 \times 3$

4 81

Sol:
$$\begin{array}{c|cc} 3 & 81 \\ \hline 3 & 27 \\ 3 & 9 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 81 is $3 \times 3 \times 3 \times 3$

5 60

Sol:
$$\begin{array}{c|cc} 2 & 60 \\ \hline 2 & 30 \\ 3 & 15 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 60 is $2 \times 2 \times 3 \times 5$

6 75

Sol:
$$\begin{array}{c|cc} 3 & 75 \\ \hline 5 & 25 \\ 5 & 5 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 75 is $3 \times 5 \times 5$

7 444

Sol:
$$\begin{array}{c|cc} 2 & 444 \\ \hline 2 & 222 \\ 111 & 111 \\ \hline 1 & \end{array}$$

Ans: $2 \times 2 \times 111 = 444$

8 315

Sol:
$$\begin{array}{c|cc} 3 & 315 \\ \hline 3 & 105 \\ 5 & 35 \\ 7 & 7 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 315 is $3 \times 3 \times 5 \times 7$

9 96

Sol:
$$\begin{array}{c|cc} 2 & 96 \\ \hline 2 & 48 \\ 2 & 24 \\ 2 & 12 \\ 3 & 6 \\ 3 & 3 \\ \hline 1 & \end{array}$$

Ans: The prime factors of 96 is $2 \times 2 \times 2 \times 2 \times 3 \times 3$

10 212
Sol:
$$\begin{array}{r} 2 | 212 \\ 2 | 106 \\ 53 | 53 \\ \hline 1 \end{array}$$

Ans: The prime factors of 212 is $2 \times 2 \times 53$

11 35
Sol:
$$\begin{array}{r} 5 | 35 \\ 7 | 7 \\ \hline 1 \end{array}$$

Ans: The prime factors of 35 is 5×7

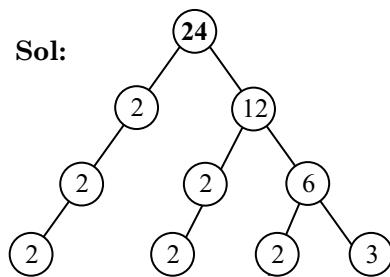
12 10
Sol:
$$\begin{array}{r} 2 | 10 \\ 5 | 5 \\ \hline 1 \end{array}$$

Ans: The prime factors of 10 is 2×5

13 84
Sol:
$$\begin{array}{r} 2 | 84 \\ 2 | 42 \\ 3 | 21 \\ 7 | 7 \\ \hline 1 \end{array}$$

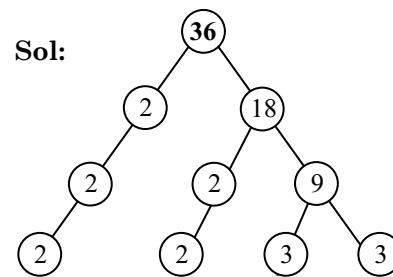
Ans: The prime factors of 84 is $2 \times 2 \times 3 \times 7$

14 40
Sol:
$$\begin{array}{r} 2 | 40 \\ 2 | 20 \\ 2 | 10 \\ 5 | 5 \\ \hline 1 \end{array}$$

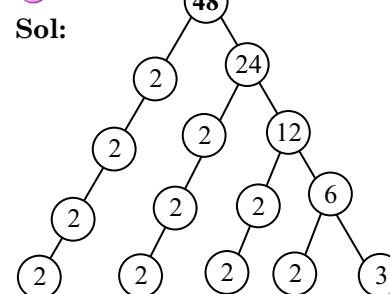

Ans: The prime factors of 40 is $2 \times 2 \times 2 \times 5$

15 55
Sol:
$$\begin{array}{r} 5 | 55 \\ 11 | 11 \\ \hline 1 \end{array}$$

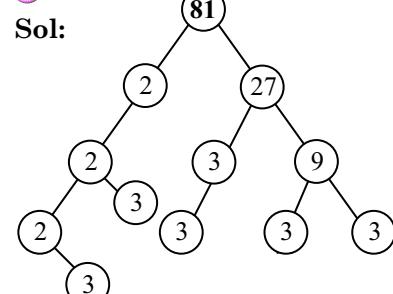
Ans: The prime factors of 55 is 5×11


iv Draw factor tree of following numbers.

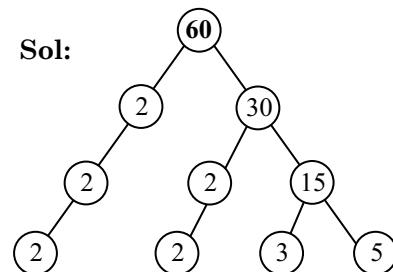
1 24


Ans: $2 \times 2 \times 2 \times 3 = 24$

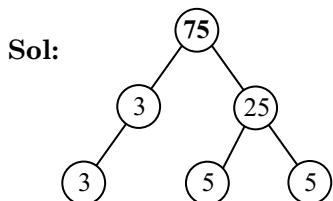
2 36


Ans: $2 \times 2 \times 3 \times 3 = 36$

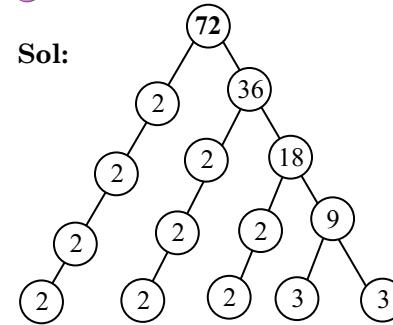
3 48


Ans: $2 \times 2 \times 2 \times 2 \times 3 = 48$

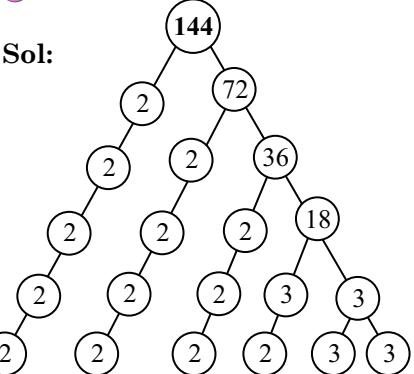
4 81


Ans: $3 \times 3 \times 3 \times 3 = 81$

5 60


Ans: $2 \times 2 \times 3 \times 5 = 60$

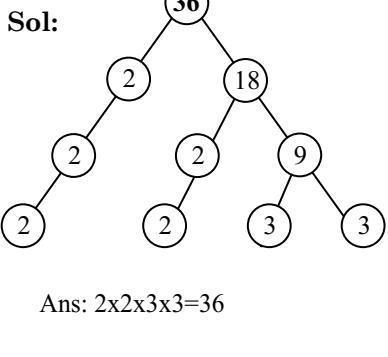
6 75


Ans: $3 \times 5 \times 5 = 75$

7 72

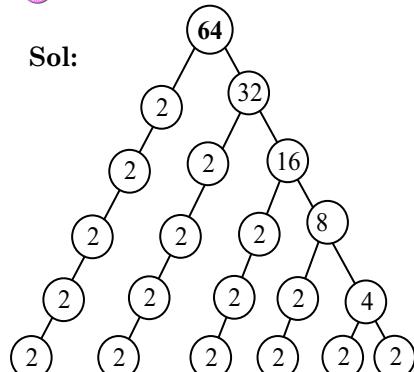

Ans: $2 \times 2 \times 2 \times 2 \times 3 \times 3 = 72$

8 144


Ans: $2 \times 2 \times 2 \times 2 \times 3 \times 3 = 144$

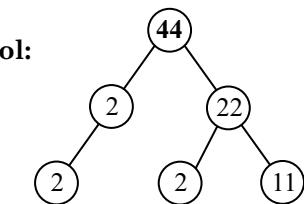
9 96

Ans: $2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96$


10 36

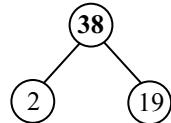
Ans: $2 \times 2 \times 3 \times 3 = 36$

11 64


Sol:

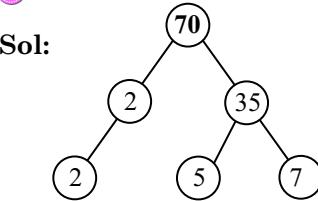
Ans: $2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$

12 44


Sol:

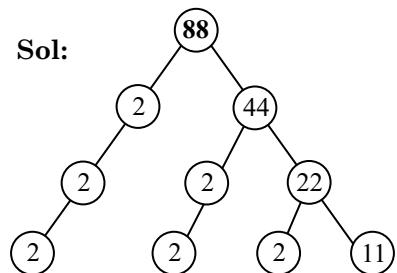
Ans: $2 \times 2 \times 11 = 44$

13 38


Sol:

Ans: $2 \times 19 = 38$

14 70


Sol:

Ans: $2 \times 5 \times 7 = 70$

15 88

Sol:

Ans: $2 \times 2 \times 2 \times 11 = 88$

COMPOUND DIVISIONS

Watch the Division of 72 and 81

Divisors of 81 = 1, 3, 9, 27, 81

Divisors of 72 = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Composite Divisors 3, 9

Greatest common Division

Example: Find composite factor of 48 and 36

Divisors of 36 = 1, 2, 3, 4, 6, 9, 12, 36

Divisors of 72 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

Composite divisor = 2, 3, 4, 6, 12

The number that can divide completely to given number is called greatest common divisors or is also called highest common factor.

Example: Find G.C.D GCF of 60 and 72

Factors of 60 = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

Factors of 72 = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Common Factors of both = 1, 2, 3, 4, 6, 12

Highest common factor = 12

Example: Find G.C.D or HCF of 21 and 63

Factors of 21 = 1, 3, 7, 21

Factors of 63 = 1, 3, 7, 9, 21, 63

Common Factors of both = 1, 3, 7, 21

Highest common factor = 21

GREATEST COMMON DIVISIONER BY FACTORIZATION

Example: Find G.C.D HCF by 60 and 105 by factorization

Factors of 105 = $3 \times 5 \times 7$

Factors of 60 = $2 \times 2 \times 3 \times 5$

Common Factors of both = 3×5

Highest common factor = 15

2	60	3	105
2	30	5	35
3	15	7	7
5	5		
	1		

EXERCISE 2.3

Find GCD by prime factors.

1 30, 90

Sol:

2	30
3	15
5	5
1	

Factors of 30 = $2 \times 3 \times 5$

Factors of 90 = $2 \times 3 \times 3 \times 5$

The common factors of both = $2 \times 3 \times 5 = 30$

Ans: The GCD of 30 and 90 is 30.

2	90
3	45
3	15
5	5
1	

1

2 75, 125

Sol:

3	75
5	25
5	5
1	

Factors of 75 = $3 \times 5 \times 5$

Factors of 125 = $5 \times 5 \times 5$

The common factors of both = 5×5

Ans: The GCD of 75 and 125 is 25.

5	125
5	25
5	5
1	

1

3 20, 35, 45

Sol:

2	20
2	10
5	5
1	

Factors of 20 = $2 \times 2 \times 5$

Factors of 35 = 5×7

Factors of 45 = $3 \times 3 \times 5$

The common factors of 20, 35 and 45 is 5.

Ans: The GCD of 20, 35 and 45 is 5.

5	35
7	7
1	

3	45
3	15
5	5
1	

4 40, 25, 75

Sol:

2	40
2	20
2	10
5	5
1	

5	25
5	5
1	

3	75
5	25
5	5
1	

Factors of 40 = $2 \times 2 \times 2 \times 5$

Factors of 25 = 5×5

Factors of 75 = $3 \times 5 \times 5$

The common factors of 40, 25 and 75 is 5.

Ans: The GCD of 40, 25 and 75 is 5.

5 48, 72

2	48
2	24
2	12
3	6
3	3
1	

2	72
2	36
2	18
3	9
3	3
1	

Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$

Factors of 72 = $2 \times 2 \times 2 \times 3 \times 3$

The common factors of both, $2 \times 2 \times 2 \times 3 = 24$

Ans: The GCD of 48, and 72 is 24.

6 33, 44, 55

3	33
11	11
1	

2	44
2	22
11	11
1	

5	55
11	11
1	

Factors of 33 = 3×11

Factors of 44 = $2 \times 2 \times 11$

Factors of 55 = 5×11

The common factors of 33, 44 and 55 is 11.

Ans: The GCD of 33, 44 and 55 is 11.

7 28, 42, 21

$$\begin{array}{|c|c|} \hline 2 & 28 \\ \hline 2 & 14 \\ \hline 7 & 7 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 2 & 42 \\ \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 40 = $2 \times 2 \times 7$

Factors of 25 = $2 \times 3 \times 7$

Factors of 75 = 3×7

The common factors of 28, 42 and 21 is 7.

Ans: The GCD of 28, 42 and 21 is 7.

8 36, 48

$$\begin{array}{|c|c|} \hline 2 & 36 \\ \hline 2 & 18 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 2 & 48 \\ \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 36 = $2 \times 2 \times 3 \times 3$

Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$

The common factors of both is $2 \times 2 \times 3 = 12$

Ans: The GCD of 36 and 48 is 12.

9 120, 96

$$\begin{array}{|c|c|} \hline 2 & 120 \\ \hline 2 & 60 \\ \hline 2 & 30 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 2 & 96 \\ \hline 2 & 48 \\ \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 36 = $2 \times 2 \times 2 \times 3 \times 5$

Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$

The common factors of both is $2 \times 2 \times 2 \times 3 = 24$

Ans: The GCD of 120 and 96 is 24

10 99, 81

$$\begin{array}{|c|c|} \hline 3 & 99 \\ \hline 3 & 33 \\ \hline 11 & 11 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 3 & 81 \\ \hline 3 & 27 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 99 = $2 \times 2 \times 11$

Factors of 81 = $3 \times 3 \times 3 \times 3$

The common factors of both is $3 \times 3 = 9$

Ans: The GCD of 99 and 81 is 9.

11 24, 96

$$\begin{array}{|c|c|} \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 2 & 96 \\ \hline 2 & 48 \\ \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 3 & 3 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 24 = $2 \times 2 \times 2 \times 3$

Factors of 96 = $2 \times 2 \times 2 \times 2 \times 2 \times 3$

The common factors of both is $2 \times 2 \times 2 \times 3 = 24$

Ans: The GCD of 24 and 96 is 24.

12 33, 99, 121

$$\begin{array}{|c|c|} \hline 3 & 33 \\ \hline 11 & 11 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 3 & 99 \\ \hline 3 & 33 \\ \hline 11 & 11 \\ \hline 1 & \\ \hline \end{array}$$

$$\begin{array}{|c|c|} \hline 11 & 121 \\ \hline 11 & 11 \\ \hline 1 & \\ \hline \end{array}$$

Factors of 33 = 3×11

Factors of 99 = $3 \times 3 \times 11$

Factors of 121 = 11×11

The common factors of 33, 99 and 121 is 11.

Ans: The GCD of 33, 99 and 121 is 11.

13 105, 60, 60

Sol:

3	105
5	35
7	7
	1

2	60
2	30
3	15
5	5
	1

2	60
2	30
3	15
5	5
	1

Factors of 105 = $3 \times 5 \times 7$

Factors of 60 = $2 \times 2 \times 3 \times 5$

Factors of 60 = $2 \times 2 \times 3 \times 5$

The common factors of 105, 60 and 60 is 15.

Ans: The GCD of 105, 60 and 60 is 15.

14 21, 63

Sol:

3	21
7	7
	1

3	63
3	21
7	7
	1

Factors of 21 = 3×7

Factors of 63 = $2 \times 3 \times 7$

The common factors of 21 and 63 is $3 \times 7 = 21$

Ans: The GCD of 21, and 63 is 21.

15 40, 30, 20

Sol:

2	40
2	20
2	10
5	5
	1

2	20
3	15
5	5
	1

2	20
2	10
5	5
	1

Factors of 40 = $2 \times 2 \times 2 \times 5$

Factors of 30 = $2 \times 3 \times 5$

Factors of 20 = $2 \times 2 \times 5$

The common factors of 40, 30 and 20 is 10.

Ans: The GCD of 40, 30 and 20 is 10

16 25, 125

Sol:

5	25
5	5
	1

5	125
5	25
5	5
	1

Factors of 25 = 5×5

Factors of 125 = $5 \times 5 \times 5$

The common factors of both is $5 \times 5 = 25$

Ans: The GCD of 25, and 125 is 25.

17 12, 144

Sol:

2	12
2	6
3	3
	1

2	144
2	72
2	36
2	18
3	9
3	3
	1

Factors of 12 = $2 \times 2 \times 3$

Factors of 125 = $2 \times 2 \times 2 \times 2 \times 3 \times 3$

The common factors of both is $2 \times 2 \times 3 = 12$

Ans: The GCD of 12, and 144 is 12.

18 35, 105

Sol:

5	35
7	7
	1

3	105
5	35
7	7
	1

Factors of 35 = 5×7

Factors of 105 = $3 \times 5 \times 3$

The common factors of 35 and 105 is $5 \times 7 = 35$

Ans: The GCD of 35, and 105 is 35.

19 27, 81

Sol:

$$\begin{array}{c|c}
 3 & 27 \\
 \hline
 3 & 9 \\
 \hline
 3 & 3 \\
 \hline
 & 1
 \end{array}$$

$$\begin{array}{c|c}
 3 & 81 \\
 \hline
 3 & 27 \\
 \hline
 3 & 9 \\
 \hline
 3 & 3 \\
 \hline
 & 1
 \end{array}$$

Factors of 27 = 3x3x3

Factors of 81 = 3x3x3x3

The common factors of 27 and 81 is 3x3x3 = 27

Ans: The GCD of 27, and 81 is 27.

20 17, 34, 51

Sol:

$$\begin{array}{c|c}
 17 & 17 \\
 \hline
 & 1
 \end{array}$$

$$\begin{array}{c|c}
 2 & 34 \\
 \hline
 17 & 17 \\
 \hline
 & 1
 \end{array}$$

$$\begin{array}{c|c}
 3 & 51 \\
 \hline
 17 & 17 \\
 \hline
 & 1
 \end{array}$$

Factors of 17 = 17x1

Factors of 34 = 2x17

Factors of 51 = 3x17

The common factors of 17, 34 and 51 is 17.

Ans: The GCD of 17, 34 and 51 is 17.

GREATEST COMMON DIVISIONER BY DIVISION METHOD

In division method in the first we divide greatest number by least number if remainder is not zero Then remainder is divided by first division when remainder becomes zero then that divisionor is called greatest common divisionor.

Example Find G.C.D of 240, 144 and 192 by division method.

$$\begin{array}{c|c}
 3 & 144 \\
 \hline
 48 & 144 \\
 \hline
 & 0
 \end{array}$$

$$\begin{array}{c|c}
 1 & 240 \\
 \hline
 192 & 240 \\
 \hline
 48 & 192 \\
 \hline
 & 0
 \end{array}$$

G.C.D is 48.

Example: Find G.C.D of 216, 108 and 162

$$\begin{array}{c|c}
 2 & 108 \\
 \hline
 54 & 108 \\
 \hline
 & 0
 \end{array}$$

$$\begin{array}{c|c}
 1 & 216 \\
 \hline
 162 & 216 \\
 \hline
 54 & 162 \\
 \hline
 108 & 1
 \end{array}$$

EXERCISE 2.4

Find G.C.D by division method.

1 98, 196, 147

Sol:

$$\begin{array}{c|c}
 1 & 147 \\
 \hline
 98 & 147 \\
 \hline
 & 2
 \end{array}$$

$$\begin{array}{c|c}
 4 & 196 \\
 \hline
 49 & 196 \\
 \hline
 & 000
 \end{array}$$

Ans: The G.C.D of 98,196 and 147 is 49

2 120, 300

Sol:

$$\begin{array}{c|c}
 2 & 300 \\
 \hline
 120 & 300 \\
 \hline
 & 240
 \end{array}$$

Ans: The G.C.D of 120 and 300 is 60.

3 57, 95, 114

$$\begin{array}{r}
 1 \\
 57 \overline{)95} \\
 -57 \quad 1 \\
 \hline
 38 \overline{)57} \\
 -38 \quad 2 \\
 \hline
 19 \overline{)38} \\
 -38 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 5 \\
 19 \overline{)114} \\
 -95 \quad 1 \\
 \hline
 19 \overline{)19} \\
 -19 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 57, 95 and 114 is 19.

4 39, 65, 13

Sol:

$$\begin{array}{r}
 3 \\
 13 \overline{)39} \\
 -39 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 5 \\
 13 \overline{)65} \\
 -65 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 39, 65 and 13 is 13.

5 63, 117, 153

$$\begin{array}{r}
 1 \\
 63 \overline{)117} \\
 -63 \quad 1 \\
 \hline
 54 \overline{)63} \\
 -54 \quad 6 \\
 \hline
 9 \overline{)54} \\
 -54 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 1 \\
 9 \overline{)153} \\
 -9 \quad 7 \\
 \hline
 19 \overline{)63} \\
 -63 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 63, 117 and 153 is 9.

6 120, 96, 72

$$\begin{array}{r}
 1 \\
 72 \overline{)96} \\
 -72 \quad 1 \\
 \hline
 24 \overline{)24} \\
 -24 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 5 \\
 24 \overline{)120} \\
 -120 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 120, 96 and 72 is 24.

7 48, 96, 144

$$\begin{array}{r}
 2 \\
 48 \overline{)96} \\
 -96 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 3 \\
 48 \overline{)144} \\
 -144 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 48, 96 and 144 is 24.

8 72, 24

$$\begin{array}{r}
 3 \\
 24 \overline{)72} \\
 -72 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 72 and 24 is 24.

9 234, 198, 126

$$\begin{array}{r}
 1 \\
 126 \overline{)198} \\
 -126 \quad 1 \\
 \hline
 72 \overline{)126} \\
 -72 \quad 1 \\
 \hline
 54 \overline{)72} \\
 -54 \quad 3 \\
 \hline
 18 \overline{)54} \\
 -54 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 1 \\
 18 \overline{)234} \\
 -18 \\
 \hline
 54 \\
 -54 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 234, 198 and 126 is 18.

10 72, 180, 36

Sol:

$$\begin{array}{r}
 36 \overline{)72} \\
 -72 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 36 \overline{)180} \\
 -180 \\
 \hline
 000
 \end{array}$$

Ans: The G.C.D of 72,180,63 is 36.

11 35, 65, 85

Sol:

$$\begin{array}{r}
 35 \overline{)65} \\
 -35 \\
 \hline
 30 \quad 2
 \end{array}
 \quad
 \begin{array}{r}
 30 \quad 35 \\
 \hline
 -30 \quad 6
 \end{array}
 \quad
 \begin{array}{r}
 5 \quad 30 \\
 \hline
 -30 \\
 00
 \end{array}
 \quad
 \begin{array}{r}
 5 \quad 17 \\
 \hline
 -5 \\
 35
 \end{array}
 \quad
 \begin{array}{r}
 -35 \\
 00
 \end{array}$$

Ans: The G.C.D of 35, 65 and 85 is 35.

12 21, 49, 63

Sol:

$$\begin{array}{r}
 21 \overline{)49} \\
 -42 \\
 \hline
 7 \quad 21
 \end{array}
 \quad
 \begin{array}{r}
 7 \quad 9 \\
 \hline
 -63 \\
 00
 \end{array}$$

Ans: The G.C.D of 21, 49 and 63 is 7

13 300, 120

Sol:

$$\begin{array}{r}
 120 \overline{)300} \\
 -240 \\
 \hline
 60 \quad 2
 \end{array}
 \quad
 \begin{array}{r}
 60 \overline{)120} \\
 -120 \\
 \hline
 000
 \end{array}$$

Ans: The G.C.D of 300, 120 is 60.

14 24, 72

Sol:

$$\begin{array}{r}
 24 \overline{)72} \\
 -72 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 24 \overline{)24} \\
 -24 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 24 and 72 is 24.

15 121, 11

Sol:

$$\begin{array}{r}
 11 \overline{)121} \\
 -120 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 121 and 11 is 11.

16 48, 144, 96

Sol:

$$\begin{array}{r}
 48 \overline{)96} \\
 -96 \\
 \hline
 00
 \end{array}
 \quad
 \begin{array}{r}
 48 \overline{)144} \\
 -144 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 48, 144 and 96 is 48.

17 153, 177, 63

$$\begin{array}{r}
 2 \\
 63 \overline{)153} \\
 -126 \quad 2 \\
 \hline
 27 \quad 63 \quad 3 \\
 -54 \quad \quad 9 \\
 \hline
 9 \quad | \quad 27 \\
 -27 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 19 \\
 9 \overline{)171} \\
 -18 \quad 2 \\
 \hline
 81 \\
 -81 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 153, 171 and 63 is 9.

18 147, 196, 98

$$\begin{array}{r}
 1 \\
 98 \overline{)147} \\
 -98 \quad 2 \\
 \hline
 49 \quad | \quad 98 \\
 -49 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 4 \\
 49 \overline{)196} \\
 -196 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 147, 196 and 98 is 49.

19 114, 57, 95

$$\begin{array}{r}
 1 \\
 57 \overline{)95} \\
 -57 \quad 1 \\
 \hline
 38 \quad | \quad 57 \quad 2 \\
 -38 \\
 \hline
 19 \quad | \quad 38 \\
 -38 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{r}
 6 \\
 19 \overline{)114} \\
 -114 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 114, 57 and 95 is 19.

20 192, 144, 246

$$\begin{array}{r}
 1 \\
 144 \overline{)192} \\
 -144 \quad 2 \\
 \hline
 48 \quad | \quad 144 \\
 -144 \\
 \hline
 000
 \end{array}$$

$$\begin{array}{r}
 6 \\
 48 \overline{)288} \\
 -288 \\
 \hline
 000
 \end{array}$$

Ans: The G.C.D of 192, 144 and 246 is 48.

21 108, 162

$$\begin{array}{r}
 1 \\
 108 \overline{)162} \\
 -108 \quad 2 \\
 \hline
 54 \quad | \quad 108 \\
 -108 \\
 \hline
 000
 \end{array}$$

Ans: The G.C.D of 108 and 162 is 54.

22 72, 96

$$\begin{array}{r}
 1 \\
 72 \overline{)96} \\
 -72 \quad 3 \\
 \hline
 24 \quad | \quad 72 \\
 -72 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 72 and 96 is 24.

23 21, 49

$$\begin{array}{r}
 2 \\
 21 \overline{)49} \\
 -42 \quad 3 \\
 \hline
 7 \quad | \quad 21 \\
 -21 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 21 and 49 is 7.

24 13, 39

$$\begin{array}{r}
 3 \\
 13 \overline{)39} \\
 -39 \\
 \hline
 00
 \end{array}$$

Ans: The G.C.D of 13 and 39 is 13.

FIND LEAST COMMON MULTIPLE

The number that is divisible by given number is called least common Multiple.

Multiple = L.C.M of 3 = 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45

Multiple = L.C.M of 4 = 4,8,12,16,20,24,28,32,36,40,44,48,52,56,60

Multiple L.C.M of 5 = 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75

LEAST COMMON MULTIPLICATION

Least common multiplication is a number whose two or more than two common division or.

Example: Find L.C.M of 4 and 8

Multiple L.C.M of 4 : 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,

Multiple L.C.M of 8 : 8, 16, 24, 32, 40, 48, 56, 64, 72, 80,

L.C.M of 4 and 8 : 8, 16, 24, 32, 40

: 8

: 8

LEAST COMMON MULTIPLE BY FACTORIZATION

The separate factors of any number are called multiple factors when same and different factors are multiplied then the result is called least common Multiple.

Example: Find L.C.M of 24 and 36 by factorization.

$$24 = 2 \times 2 \times 2 \times 3$$

$$36 = 2 \times 2 \times 3 \times 3$$

Same factors

$$= 2 \times 2 \times 3$$

Different factors

$$= 2 \times 3$$

Same and different factors = $2 \times 2 \times 3 \times 2 \times 3$

L.C.M = 72

$$\begin{array}{r} 2 \mid 24 \\ 2 \mid 12 \\ 2 \mid 6 \\ 3 \mid 3 \\ \hline 1 \end{array}$$

$$\begin{array}{r} 2 \mid 36 \\ 2 \mid 18 \\ 3 \mid 9 \\ 3 \mid 3 \\ \hline 1 \end{array}$$

EXERCISE 2.5**Find L.C.M by factorization**

1 10, 20, 30

$$\begin{array}{r} 2 \mid 10, 20, 30 \\ 2 \mid 5, 10, 15 \\ 3 \mid 5, 5, 15 \\ 5 \mid 5, 5, 5 \\ \hline 1, 1, 1 \end{array}$$

Ans: The L.C.M of 10,20 and 30 is
 $2 \times 2 \times 3 \times 5$

$$= 60$$

2 20, 25, 45

$$\begin{array}{r} 2 \mid 20, 25, 45 \\ 2 \mid 10, 25, 45 \\ 3 \mid 5, 25, 45 \\ 3 \mid 5, 25, 15 \\ 5 \mid 5, 25, 5 \\ 5 \mid 1, 5, 1 \\ \hline 1, 1, 1 \end{array}$$

Ans: The L.C.M of 20,25 and 45 is
 $2 \times 2 \times 3 \times 5 \times 5$
 $= 900$

3 24, 36, 48

$$\begin{array}{r} 2 \mid 22, 36, 48 \\ 2 \mid 12, 18, 24 \\ 2 \mid 6, 9, 12 \\ 2 \mid 3, 9, 6 \\ 3 \mid 3, 9, 3 \\ 3 \mid 1, 3, 1 \\ \hline 1, 1, 1 \end{array}$$

Ans: The L.C.M of 24,36 and 48 is
 $2 \times 2 \times 2 \times 3 \times 3$
 $= 144$

4 32, 64

$$\begin{array}{r} 2 \mid 32, 64 \\ 2 \mid 16, 32 \\ 2 \mid 8, 16 \\ 2 \mid 4, 8 \\ 2 \mid 2, 4 \\ 2 \mid 1, 2 \\ \hline 1, 1 \end{array}$$

Ans: The L.C.M of 32 and 64 is
 $2 \times 2 \times 2 \times 2 \times 2$
 $= 64$

5 26, 39, 91

$$\begin{array}{r} 2 \mid 26, 39, 91 \\ 3 \mid 13, 39, 91 \\ 7 \mid 13, 13, 91 \\ 13 \mid 13, 13, 13 \\ \hline 1, 1, 1 \end{array}$$

Ans: The L.C.M of 26,39 and 91 is
 $2 \times 3 \times 7 \times 13$
 $= 546$

6 11, 22, 33

$$\begin{array}{r} 2 \mid 11, 22, 33 \\ 11 \mid 11, 11, 23 \\ 23 \mid 1, 1, 23 \\ \hline 1, 1, 1 \end{array}$$

Ans: The L.C.M of 11,22 and 33 is
 $2 \times 11 \times 23$
 $= 506$

7 24, 40

2	24, 40
2	12, 20
2	6, 10
3	3, 5
5	1, 5
	1, 1

Ans: The L.C.M of 24 and 40 is
 $2 \times 2 \times 2 \times 3 \times 5$
 $=120$

9 16, 32, 48

2	16, 32, 48
2	8, 16, 24
2	4, 8, 12
2	2, 4, 6
2	1, 2, 3
3	1, 1, 3
	1, 1, 1

Ans: The L.C.M of 16,32 and 48 is
 $2 \times 2 \times 2 \times 2 \times 2 \times 3$
 $=96$

11 14, 28, 98

2	14, 28, 98
2	7, 14, 49
7	7, 7, 49
7	1, 1, 7
	1, 1, 1

Ans: The L.C.M of 14,28 and 98 is
 $2 \times 2 \times 7 \times 7$
 $=196$

8 15, 25, 35

3	15, 25, 35
5	5, 25, 35
5	1, 5, 7
7	1, 1, 7
	1, 1, 1

Ans: The L.C.M of 15,25 and 35 is
 $3 \times 5 \times 5 \times 7$
 $=525$

10 11, 22, 44

2	11, 22, 44
2	11, 11, 22
11	11, 11, 11
	1, 1, 1

Ans: The L.C.M of 11, 22 and 44 is
 $2 \times 2 \times 11$
 $=44$

12 24, 72, 108

2	24, 72, 108
2	12, 36, 54
2	6, 18, 27
3	3, 9, 9
3	1, 3, 9
3	1, 1, 3
	1, 1, 1

Ans: The L.C.M of 24, 72 and 108 is
 $2 \times 2 \times 2 \times 3 \times 3 \times 3$
 $=216$

13 15, 30, 105

2	24, 40
2	12, 20
2	6, 10
3	3, 5
5	1, 5
	1, 1

Ans: The L.C.M of 24 and 40 is
 $2 \times 2 \times 2 \times 3 \times 5$
 $=120$

14 72, 81

2	72, 81
2	36, 81
2	18, 81
3	9, 81
3	3, 27
3	1, 9
3	1, 3
	1, 1

Ans: The L.C.M of 72 and 81 is
 $2 \times 2 \times 2 \times 3 \times 3 \times 3$
 $=648$

15 24, 48

2	24, 48
2	12, 24
2	6, 12
2	3, 6
3	3, 3
	1, 1

Ans: The L.C.M of 24 and 48 is
 $2 \times 2 \times 2 \times 3 \times 3$
 $=48$

16 15, 45, 120

2	15, 45, 120
2	15, 45, 60
2	15, 45, 30
3	15, 45, 15
3	5, 15, 5
5	5, 5, 5
	1, 1, 1

Ans: The L.C.M of 15, 45 and 120 is
 $2 \times 2 \times 3 \times 3 \times 5$
 $=360$

Least common multiple by division method

Least common multiple by division method of multiplication in, when all given numbers are factorized in slap there any number that divide any one a two number Then the third is divided by next number, and factors become same and different.

IMPORTANT INFORMATION

When any number has not divisor a number it place down in same position.

Example: Find least common multiple by 96, 256 and 128 by factorization.

Solution:

$$\begin{array}{l} \text{Factors} \quad 2 \times 3 = \\ \text{L.C.M} \quad = 768 \end{array}$$

2	96, 256, 128
2	48, 128, 64
2	24, 64, 32
2	12, 32, 16
2	6, 16, 8
2	3, 8, 4
2	3, 4, 2
2	3, 2, 1
3	3, 1, 1
	1, 1, 1

Example: Find least common multiple of 42, 28 and 56 by factorization.

Solution

$$\begin{array}{l} \text{Factors} \quad = 2 \times 2 \times 7 \times 3 \times 2 \\ \text{L.C.M} \quad = 168 \end{array}$$

2	42, 28, 56
2	21, 14, 28
7	21, 7, 14
3	3, 1, 2
2	1, 1, 2
	1, 1, 1

EXERCISE 2.6

Find least common multiple by factorization.

1 12, 36, 42

2	12, 36, 42
2	6, 18, 21
3	3, 9, 21
3	1, 3, 7
7	1, 1, 7
	1, 1, 1

$$\begin{array}{l} 2 \times 2 \times 3 \times 3 \times 7 \\ = 252 \end{array}$$

2 25, 40, 90

2	25, 40, 90
2	25, 20, 45
2	25, 10, 45
3	25, 5, 45
3	25, 5, 15
5	5, 1, 5
5	1, 1, 1
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 25, 40 and 90 is} \\ 2 \times 2 \times 2 \times 3 \times 5 \times 5 \\ = 1800 \end{array}$$

3 27, 63, 99

3	27, 63, 99
3	9, 21, 33
3	3, 7, 11
7	1, 7, 11
11	1, 1, 11
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 27, 63 and 99 is} \\ 3 \times 3 \times 3 \times 7 \times 11 \\ = 2079 \end{array}$$

4 24, 48, 72

2	24, 48, 72
2	12, 24, 36
2	6, 12, 18
2	3, 6, 9
3	3, 3, 9
3	1, 1, 3
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 24, 48 and 72 is} \\ 2 \times 2 \times 2 \times 2 \times 3 \times 3 \\ = 144 \end{array}$$

5 28, 42, 56

2	28, 42, 56
2	14, 21, 28
2	7, 21, 14
3	7, 21, 7
7	7, 7, 7
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 28, 42 and 56 is} \\ 2 \times 2 \times 2 \times 3 \times 5 \times 7 \\ = 168 \end{array}$$

2	54, 60, 80
2	27, 30, 40
2	27, 15, 20
2	27, 15, 10
3	27, 15, 5
3	9, 5, 5
3	9, 5, 5
5	1, 5, 5
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 54, 60 and 80 is} \\ 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \\ = 160 \end{array}$$

6 54, 60, 80

2	24, 36, 60
2	12, 18, 30
2	6, 9, 15
2	3, 9, 15
3	3, 9, 15
3	1, 3, 15
5	1, 1, 5
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 24, 36 and 60 is} \\ 2 \times 2 \times 2 \times 3 \times 3 \times 5 \\ = 720 \end{array}$$

8 34, 51, 85

2	34, 51, 85
3	17, 51, 85
5	17, 17, 85
17	17, 17, 17
	1, 1, 1

$$\begin{array}{l} \text{Ans: The L.C.M of 34, 51 and 85 is} \\ 2 \times 3 \times 5 \times 17 \\ = 510 \end{array}$$

9 105, 135, 150

2	105, 135, 150
3	105, 135, 75
3	35, 45, 25
3	35, 15, 25
5	35, 5, 25
5	35, 1, 5
7	7, 1, 1
1	1, 1, 1

Ans: The L.C.M of 105, 135 and 150 is
 $2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$
 $= 9450$

11 19, 76

2	19, 70
2	19, 38
19	19, 19
1	1, 1

Ans: The L.C.M of 19 and 76 is
 $2 \times 2 \times 19$
 $= 76$

13 65, 52, 104

2	65, 52, 104
2	65, 26, 52
2	65, 13, 26
5	65, 13, 26
13	13, 13, 13
1	1, 1, 1

Ans: The L.C.M of 65, 52 and 104 is
 $2 \times 2 \times 5 \times 13$
 $= 520$

10 60, 45, 81

2	60, 45, 81
2	30, 45, 81
3	15, 45, 81
3	5, 15, 27
3	5, 5, 9
3	5, 5, 3
5	5, 5, 1
1	1, 1, 1

Ans: The L.C.M of 60, 45 and 80 is
 $2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5$
 $= 1620$

12 20, 60, 80

2	20, 60, 80
2	10, 30, 40
2	10, 15, 20
2	5, 15, 10
3	5, 15, 5
5	5, 5, 5
1	1, 1, 1

Ans: The L.C.M of 20, 60 and 80 is
 $2 \times 2 \times 2 \times 2 \times 3 \times 5$
 $= 240$

14 22, 44, 66

2	22, 44, 66
2	11, 22, 33
3	11, 11, 33
11	11, 11, 11
1	1, 1, 1

Ans: The L.C.M of 22, 44 and 66 is
 $2 \times 2 \times 3 \times 11$
 $= 132$

15 48, 72, 156

2	48, 72, 156
2	24, 36, 78
2	12, 18, 39
2	6, 9, 39
3	3, 9, 39
3	1, 3, 13
13	1, 1, 13
1	1, 1, 1

Ans: The L.C.M of 48, 72 and 156 is
 $2 \times 2 \times 2 \times 3 \times 3 \times 13$
 $= 1872$

17 35, 25, 20

2	35, 25, 20
2	35, 25, 10
5	35, 25, 5
5	7, 5, 1
7	7, 1, 1
1	1, 1, 1

Ans: The L.C.M of 35, 25 and 20 is
 $2 \times 2 \times 5 \times 5 \times 7$
 $= 700$

19 65, 70

2	65, 70
5	65, 35
7	13, 7
13	13, 1
1	1, 1

Ans: The L.C.M of 65 and 70 is
 $2 \times 5 \times 7 \times 13$
 $= 910$

16 25, 50, 75

2	25, 50, 75
3	25, 25, 75
5	25, 25, 25
5	5, 5, 5
1	1, 1, 1

Ans: The L.C.M of 25, 50 and 75 is
 $2 \times 3 \times 5 \times 5 \times 5$
 $= 150$

18 24, 96

2	24, 96
2	12, 48
2	6, 24
2	3, 12
2	3, 6
3	3, 3
1	1, 1

Ans: The L.C.M of 24 and 96 is
 $2 \times 2 \times 2 \times 2 \times 3 \times 3$
 $= 96$

20 50, 80, 125

2	50, 80, 125
2	25, 40, 125
2	25, 20, 125
2	25, 10, 125
5	25, 5, 125
5	5, 1, 25
5	1, 1, 5
1	1, 1, 1

Ans: The L.C.M of 50, 80 and 125 is
 $2 \times 2 \times 2 \times 5 \times 5 \times 5$
 $= 2000$

21 40, 80, 68

Sol:

$$\begin{array}{r|rrr}
 2 & 40, 80, 68 \\
 \hline
 2 & 20, 40, 34 \\
 2 & 10, 20, 17 \\
 2 & 5, 10, 17 \\
 5 & 5, 5, 17 \\
 17 & 1, 1, 17 \\
 \hline
 1 & 1, 1, 1
 \end{array}$$

Ans: The L.C.M of 40, 80 and 68 is
 $2 \times 2 \times 2 \times 2 \times 5 \times 17$
 $= 1360$

QUESTIONS ABOUT DAILY LIFE

Example: Find least number which can be divided 6, 12, 24

Solution:

Factors $= 2 \times 2 \times 2 \times 2 \times 3$

L.C.M $= 48$

$$\begin{array}{r|rrr}
 2 & 24, 12, 6 \\
 \hline
 2 & 12, 6, 3 \\
 2 & 6, 3, 1 \\
 2 & 2, 3, 1 \\
 3 & 1, 3, 1 \\
 \hline
 1 & 1, 1, 1
 \end{array}$$

EXERCISE 2.7

1 Find the L.C.M that could be divided by 8, 16 and 24.

Sol:

$$\begin{array}{r|rrr}
 2 & 8, 16, 24 \\
 \hline
 2 & 4, 8, 12 \\
 2 & 2, 4, 6 \\
 2 & 1, 2, 3 \\
 3 & 1, 1, 3 \\
 \hline
 1 & 1, 1, 1
 \end{array}$$

Ans: $2 \times 2 \times 2 \times 2 \times 3 = 48$

2 Find the least number of mangoes which could be distributed in 13 girls, 26 boys and 39 women.

Sol:

$$\begin{array}{r|rrr}
 2 & 13, 26, 39 \\
 \hline
 3 & 13, 13, 39 \\
 13 & 13, 13, 13 \\
 \hline
 1 & 1, 1, 1
 \end{array}$$

Ans: $2 \times 3 \times 13 = 78$

3 Find the greatest number which could be divided to 35, 42 and 36 completely.

Sol:

$$\begin{array}{r|rrr}
 5 & 35 \\
 \hline
 7 & 7 \\
 \hline
 1 & 1
 \end{array}
 \quad
 \begin{array}{r|rrr}
 2 & 42 \\
 \hline
 3 & 21 \\
 \hline
 7 & 7 \\
 \hline
 1 & 1
 \end{array}
 \quad
 \begin{array}{r|rrr}
 2 & 36 \\
 \hline
 3 & 18 \\
 \hline
 3 & 9 \\
 \hline
 3 & 3 \\
 \hline
 1 & 1
 \end{array}$$

Factors of 35 = $5 \times 7 \times 1$
Factors of 42 = $2 \times 3 \times 7 \times 1$
Factors of 36 = $2 \times 2 \times 3 \times 3 \times 1$

Ans: The greatest numbers which could be divided to 35, 42 and 36 completely is 1.

4 Find the greatest number of oranges which can be divided in 36, 48, 72 boys.

Sol:

$$\begin{array}{r|rrr}
 2 & 36, 48, 72 \\
 \hline
 2 & 18, 24, 36 \\
 \hline
 3 & 9, 12, 12 \\
 \hline
 3 & 4, 4
 \end{array}$$

Ans: $2 \times 2 \times 3 = 12$

5 Find the greatest number that could be divided in 270, 351, 63 children completely.

Sol:

$$\begin{array}{r|rrr}
 3 & 270, 351, 63 \\
 \hline
 3 & 90, 117, 21 \\
 \hline
 30 & 39, 7
 \end{array}$$

Ans: $3 \times 3 = 9$

6 Find L.C.M of apples which could be divided in 15 men, 60 women and 185 children.

Sol:

$$\begin{array}{r|rrr}
 3 & 7, 21, 49 \\
 \hline
 7 & 7, 7, 49 \\
 \hline
 7 & 1, 1, 7 \\
 \hline
 1, 1, 1
 \end{array}$$

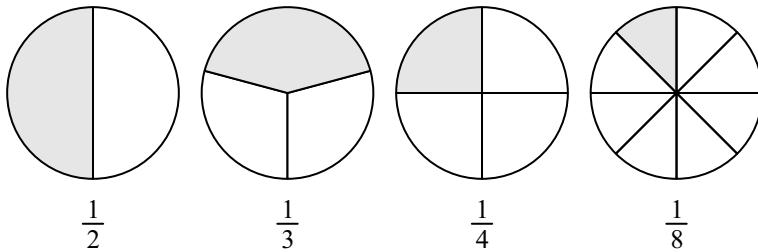
Ans: $3 \times 7 \times 7 = 147$

7 Find the greatest number that could be divided to 72, 144 and 288.

Sol:

$$\begin{array}{r|rrr}
 2 & 15, 60, 185 \\
 \hline
 2 & 15, 30, 185 \\
 \hline
 3 & 15, 15, 185 \\
 \hline
 5 & 5, 5, 185 \\
 \hline
 37 & 1, 1, 37 \\
 \hline
 1, 1, 1
 \end{array}$$

Ans: $2 \times 2 \times 3 \times 5 \times 37 = 2220$


Sol:

$$\begin{array}{r|rrr}
 2 & 72, 144, 288 \\
 \hline
 2 & 36, 72, 144 \\
 \hline
 2 & 18, 36, 72 \\
 \hline
 3 & 9, 18, 36 \\
 \hline
 3 & 3, 6, 12 \\
 \hline
 1 & 2, 4
 \end{array}$$

Ans: $2 \times 2 \times 2 \times 3 \times 3 = 72$

COMMON FRACTION

When a complete thing is divided into parts then each part is called its fraction Part.

IMPORTANT INFORMATION

- Every fraction has two parts. Which are separated by bar.
- The upper portion bar is called nominator and lower part of Bar is called Denominator.

Nominator \longrightarrow 3 Denominator \longrightarrow 8

Example: separate the Nominators of given fractions.

$$\frac{9}{11}, \frac{11}{19}, \frac{2}{10}, \frac{15}{21}, \frac{4}{9}, \frac{3}{4}, \frac{19}{20}, \frac{18}{9}, \frac{21}{25}, \frac{37}{45}$$

$$9, 11, 2, 15, 4, 3, 19, 18, 21, 37$$

INVERSE FRACTION

Such fraction whose Nominator is greater than that of Denominator is called Inverse fraction.

Example $\frac{2}{5}, \frac{3}{7}, \frac{9}{21}, \frac{1}{8}, \frac{2}{6}$

DIRECT FRACTION

Such fraction where Nominator is lesser than that of Denominator is called direct fraction. OR proper fraction.

Example: $\frac{2}{3}, \frac{10}{5}, \frac{18}{12}, \frac{20}{15}, \frac{4}{3}$

COMPOUND FRACTION

Such fraction whose a part is complete number and other is direct fraction is called compound fraction.

Example: $1\frac{3}{5}, 2\frac{11}{21}, 1\frac{1}{3}, 2\frac{15}{19}, 1\frac{63}{240}$

EXERCISE 3.1

i Separate the Nominators of given the fractions.

1	$\frac{9}{12}$	2	$\frac{15}{23}$	3	$\frac{1}{6}$	4	$\frac{7}{9}$	5	$\frac{11}{12}$	6	$\frac{4}{4}$	7	$\frac{3}{7}$
8	$\frac{8}{18}$	9	$\frac{21}{14}$	10	$\frac{35}{49}$	11	$\frac{9}{10}$	12	$\frac{13}{17}$	13	$\frac{7}{5}$	14	$\frac{2}{9}$

Ans: S.N:	NOMINATORS	DENOMINATORS
1	9	12
2	15	23
3	1	6
4	7	9
5	11	12
6	4	4
7	3	7
8	8	18
9	21	14
10	35	49
11	9	10
12	13	17
13	7	5
14	2	9

ii Separate the direct fractions and inverse fractions.

1	$\frac{4}{6}$	2	$\frac{3}{7}$	3	$\frac{15}{24}$	4	$\frac{19}{30}$	5	$\frac{1}{8}$	6	$\frac{2}{11}$
7	$\frac{16}{12}$	8	$\frac{4}{3}$	9	$\frac{6}{4}$	10	$\frac{1}{3}$	11	$\frac{17}{10}$		

Ans:	Proper Fraction	Improper Fraction
1	$\frac{4}{6}$	$\frac{16}{12}$
2	$\frac{3}{7}$	$\frac{4}{3}$
3	$\frac{15}{24}$	$\frac{6}{4}$
4	$\frac{19}{30}$	$\frac{17}{10}$

Ans:	Proper Fraction	Improper Fraction
5	$\frac{1}{8}$	
6	$\frac{2}{11}$	
10	$\frac{1}{3}$	

iii Convert the improper into compound fraction.

1 $\frac{9}{4}$

Sol:
$$4 \overline{)9} \begin{matrix} 2 \\ -8 \\ \hline 1 \end{matrix}$$

 $2 \frac{1}{4}$ Ans:

2 $\frac{11}{3}$

Sol:
$$3 \overline{)11} \begin{matrix} 3 \\ -9 \\ \hline 2 \end{matrix}$$

 $3 \frac{2}{3}$ Ans:

3 $\frac{10}{6}$

Sol:
$$6 \overline{)10} \begin{matrix} 1 \\ -6 \\ \hline 4 \end{matrix}$$

 $1 \frac{4}{6}$ Ans:

4 $\frac{21}{10}$

Sol:
$$10 \overline{)21} \begin{matrix} 2 \\ -20 \\ \hline 1 \end{matrix}$$

 $2 \frac{1}{10}$ Ans:

5 $\frac{9}{7}$

Sol:
$$7 \overline{)9} \begin{matrix} 1 \\ -7 \\ \hline 2 \end{matrix}$$

 $1 \frac{2}{7}$ Ans:

6 $\frac{30}{24}$

Sol:
$$24 \overline{)30} \begin{matrix} 1 \\ -24 \\ \hline 6 \end{matrix}$$

 $1 \frac{6}{24}$ Ans:

7 $\frac{7}{3}$

Sol:
$$3 \overline{)7} \begin{matrix} 2 \\ -6 \\ \hline 1 \end{matrix}$$

 $2 \frac{1}{3}$ Ans:

8 $\frac{15}{13}$

Sol:
$$13 \overline{)15} \begin{matrix} 1 \\ -13 \\ \hline 2 \end{matrix}$$

 $1 \frac{2}{13}$ Ans:

9 $\frac{13}{4}$

Sol:
$$4 \overline{)13} \begin{matrix} 3 \\ -12 \\ \hline 1 \end{matrix}$$

 $3 \frac{1}{4}$ Ans:

10 $\frac{21}{9}$

Sol:
$$9 \overline{)21} \begin{matrix} 2 \\ -18 \\ \hline 3 \end{matrix}$$

 $2 \frac{3}{9}$ Ans:

11 $\frac{15}{7}$

Sol:
$$7 \overline{)15} \begin{matrix} 2 \\ -14 \\ \hline 1 \end{matrix}$$

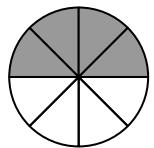
 $2 \frac{1}{7}$ Ans:

12 $\frac{18}{4}$

Sol:
$$4 \overline{)18} \begin{matrix} 2 \\ -16 \\ \hline 2 \end{matrix}$$

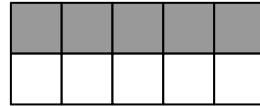
 $2 \frac{2}{4}$ Ans:

13 $\frac{19}{6}$


Sol:
$$6 \overline{)19} \begin{matrix} 3 \\ -18 \\ \hline 1 \end{matrix}$$

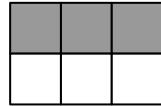
 $3 \frac{1}{6}$ Ans:

14 $\frac{25}{21}$


Sol:
$$21 \overline{)25} \begin{matrix} 1 \\ -21 \\ \hline 4 \end{matrix}$$

 $1 \frac{4}{21}$ Ans:

TO FIND THE LIKE OR EQUAL FRACTIONS


Such fractions whose denominators and numerators are different not their solutions are equal, that fractions are called equal fractions.

$$\frac{4}{8}$$

$$\frac{5}{10}$$

$$\frac{3}{6}$$

IMPORTANT INFORMATION

- In above diagram, the length and width is equal in all. Such fractions are called like fraction.
- In diagram (i) It is divided into six equal parts, from which three parts are shaded so that fraction is $\frac{3}{6}$
- In diagram ii, it is divided into ten equal parts, from which five parts are shaded so that fraction is $\frac{5}{10}$
- In diagrams (iii) it is divided into eight parts from which four parts are shaded so that fraction is $\frac{4}{8}$

It is proved that halves of all diagram are shaded and their

Fraction is $\frac{1}{2}$ in all.

So that fraction $\frac{4}{8} = \frac{5}{10} = \frac{3}{6}$ are equal

Write the following fractions in three equal fractions.

i) $\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \frac{5}{15}$

ii) $\frac{8}{10}, \frac{4}{5}, \underline{\quad}, \underline{\quad}, \underline{\quad}$

iii) $\frac{2}{4}, \frac{1}{2}, \underline{\quad}, \underline{\quad}, \underline{\quad}$

iv) $\frac{3}{9}, \frac{6}{18}, \frac{3}{9}, \frac{1}{3}, \underline{\quad}$

EXERCISE 3.2

i) Write down the five equal fractions each of the following.

1) $\frac{12}{13}$

Sol: $\frac{12 \times 1}{13 \times 1}, \frac{12 \times 2}{13 \times 2}, \frac{12 \times 3}{13 \times 3}, \frac{12 \times 4}{13 \times 4}, \frac{12 \times 5}{13 \times 5}$
 $\frac{12}{13}, \frac{24}{26}, \frac{36}{39}, \frac{48}{52}, \frac{60}{65}$ Ans:

2) $\frac{5}{6}$

Sol: $\frac{5 \times 1}{6 \times 1}, \frac{5 \times 2}{6 \times 2}, \frac{5 \times 3}{6 \times 3}, \frac{5 \times 4}{6 \times 4}, \frac{5 \times 5}{6 \times 5}$
 $\frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}$ Ans:

3) $\frac{2}{4}$

Sol: $\frac{2 \times 1}{4 \times 1}, \frac{2 \times 2}{4 \times 2}, \frac{2 \times 3}{4 \times 3}, \frac{2 \times 4}{4 \times 4}, \frac{2 \times 5}{4 \times 5}$
 $\frac{2}{4}, \frac{4}{8}, \frac{6}{12}, \frac{8}{16}, \frac{10}{20}$ Ans:

4) $\frac{5}{11}$

Sol: $\frac{5 \times 1}{11 \times 1}, \frac{5 \times 2}{11 \times 2}, \frac{5 \times 3}{11 \times 3}, \frac{5 \times 4}{11 \times 4}, \frac{5 \times 5}{11 \times 5}$
 $\frac{5}{11}, \frac{10}{22}, \frac{15}{33}, \frac{20}{44}, \frac{25}{55}$ Ans:

5 $\frac{3}{9}$

Sol: $\frac{3 \times 1}{9 \times 1}, \frac{3 \times 2}{9 \times 2}, \frac{3 \times 3}{9 \times 3}, \frac{3 \times 4}{9 \times 4}, \frac{3 \times 5}{9 \times 5}$
 $\frac{3}{9}, \frac{6}{18}, \frac{9}{27}, \frac{12}{36}, \frac{15}{45}$ Ans:

6 $\frac{1}{7}$

Sol: $\frac{1 \times 1}{7 \times 1}, \frac{1 \times 2}{7 \times 2}, \frac{1 \times 3}{7 \times 3}, \frac{1 \times 4}{7 \times 4}, \frac{1 \times 5}{7 \times 5}$
 $\frac{1}{7}, \frac{2}{14}, \frac{3}{21}, \frac{4}{28}, \frac{5}{35}$ Ans:

7 $\frac{3}{12}$

Sol: $\frac{3 \times 1}{12 \times 1}, \frac{3 \times 2}{12 \times 2}, \frac{3 \times 3}{12 \times 3}, \frac{3 \times 4}{12 \times 4}, \frac{3 \times 5}{12 \times 5}$
 $\frac{3}{12}, \frac{6}{24}, \frac{9}{36}, \frac{12}{48}, \frac{15}{60}$ Ans:

8 $\frac{2}{14}$

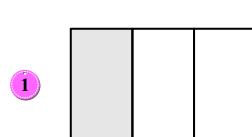
Sol: $\frac{2 \times 1}{14 \times 1}, \frac{2 \times 2}{14 \times 2}, \frac{2 \times 3}{14 \times 3}, \frac{2 \times 4}{14 \times 4}, \frac{2 \times 5}{14 \times 5}$
 $\frac{2}{14}, \frac{4}{28}, \frac{6}{42}, \frac{8}{56}, \frac{10}{70}$ Ans:

9 $\frac{10}{9}$

Sol: $\frac{10 \times 1}{9 \times 1}, \frac{10 \times 2}{9 \times 2}, \frac{10 \times 3}{9 \times 3}, \frac{10 \times 4}{9 \times 4}, \frac{10 \times 5}{9 \times 5}$
 $\frac{10}{9}, \frac{20}{18}, \frac{30}{27}, \frac{40}{36}, \frac{50}{45}$ Ans:

10 $\frac{7}{8}$

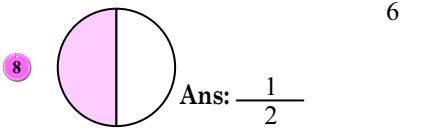
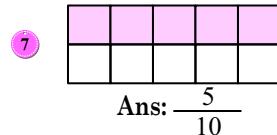
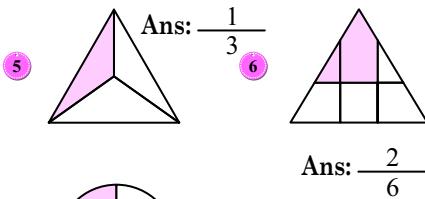
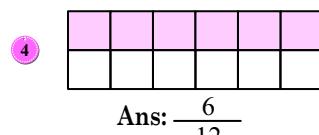
Sol: $\frac{7 \times 1}{8 \times 1}, \frac{7 \times 2}{8 \times 2}, \frac{7 \times 3}{8 \times 3}, \frac{7 \times 4}{8 \times 4}, \frac{7 \times 5}{8 \times 5}$
 $\frac{7}{8}, \frac{14}{16}, \frac{21}{24}, \frac{28}{32}, \frac{35}{40}$ Ans:


11 $\frac{2}{7}$

Sol: $\frac{2 \times 1}{2 \times 1}, \frac{2 \times 2}{2 \times 2}, \frac{2 \times 3}{2 \times 3}, \frac{2 \times 4}{2 \times 4}, \frac{2 \times 5}{2 \times 5}$
 $\frac{2}{2}, \frac{4}{14}, \frac{6}{21}, \frac{8}{28}, \frac{10}{35}$ Ans:
 $\frac{4}{4}, \frac{6}{6}, \frac{8}{8}, \frac{10}{10}$

12 $\frac{9}{15}$

Sol: $\frac{9 \times 1}{15 \times 1}, \frac{9 \times 2}{15 \times 2}, \frac{9 \times 3}{15 \times 3}, \frac{9 \times 4}{15 \times 4}, \frac{9 \times 5}{15 \times 5}$
 $\frac{9}{15}, \frac{18}{30}, \frac{27}{45}, \frac{36}{60}, \frac{45}{75}$ Ans:





ii Write down the equal fraction according to the diagrams.

Ans: $\frac{1}{3}$

Ans: $\frac{2}{6}$ Ans: _____

Ans: $\frac{2}{4}$

TO SIMPLIFY THE COMMON FRACTIONS

We know that equal fraction can be formed by division of same number to denominator and Nominator By this function we can simplify common fraction.

For Example: $\frac{14}{21}$

Solution $\frac{14 \div 7}{21 \div 7} = \frac{2}{3}$

For Example: $\frac{12}{6}$

Solution $\frac{12 \div 2}{16 \div 2} = \frac{6}{8}$
 $\frac{6 \div 2}{7 \div 2} = \frac{3}{4}$

COMPARISON OF FRACTIONS

In comparison of fraction “ $<$ ” is used for (isless than) and “ $>$ ” is used for (is greater than) To find the less or greater fraction from same denominator fractions.

Separate the same denometor with respect to less greater fraction

In equal denominator fraction where nominator is greater than it is greater fraction and where nominator is less than denominator it is less fraction.

In Example: From $\frac{7}{8}$ And $\frac{3}{8}$ $\frac{3}{8}$ Is Less than $\frac{7}{8}$

Remember this

Such fractions whose nominators are equal but from which denominator is less than that of denominator fraction is greater and whose denominator is greater than that of nominator, the fraction is less.

COMPARISON OF DIFFERENT DENOMINATOR AND NOMINATOR FRACTION

Such fraction whose nominators and denominators are different then for Comparison of both the nominator of first is multiplied with denominator of an other and nominator of second is multiplied with denominator of other.

As: $\frac{3}{4}$ And $\frac{2}{6}$ are compared

Solution:

$$\frac{3}{4} \text{ vs } \frac{2}{6}$$

$$3 \times 6 \quad 2 \times 4$$

$$9 \quad 8$$

$$9 > 8$$

So that $\frac{3}{4} > \frac{2}{6}$

EXERCISE 3.3

1 Show in simplified from the fractions.

1 $\frac{27}{81}$

$$\text{Sol: } \frac{27}{81} = \frac{9^3}{27^3} = \frac{3^3}{3^3} = \frac{3^1}{3^1} = \frac{1}{3}$$

Ans: $\frac{1}{3}$

2 $\frac{9}{45}$

$$\text{Sol: } \frac{9}{45} = \frac{9^3}{45^3} = \frac{3^3}{15^3} = \frac{3^1}{15^1} = \frac{1}{5}$$

Ans: $\frac{1}{5}$

3 $\frac{35}{7}$

Sol: $\frac{35}{7}^5$
~~7~~
 $= \frac{5}{1}$ Ans:

4 $\frac{15}{30}$

Sol: $\frac{15}{30}^3$
~~30~~
 $= \frac{3}{6}^1$
 $= \frac{1}{2}$ Ans:

5 $\frac{24}{48}$

Sol: $\frac{24}{48}^{12}$
~~48~~
 $= \frac{12}{24}^6$
 $= \frac{6}{12}^3$
 $= \frac{3}{6}^1$
 $= \frac{1}{2}$ Ans:

7 $\frac{21}{28}$

Sol: $\frac{21}{28}^3$
~~28~~
 $= \frac{3}{4}$ Ans:

9 $\frac{14}{18}$

Sol: $\frac{14}{18}^7$
~~18~~
 $= \frac{7}{9}$ Ans:

Sol: $\frac{45}{63}^{15}$
~~63~~
 $= \frac{15}{21}^5$
 $= \frac{5}{7}$ Ans:

8 $\frac{42}{24}$

Sol: $\frac{42}{24}^{21}$
~~24~~
 $= \frac{21}{12}^7$
 $= \frac{7}{4}$ Ans:

10 $\frac{21}{63}$

Sol: $\frac{21}{63}^7$
~~63~~
 $= \frac{7}{21}^1$
 $= \frac{1}{3}$ Ans:

11 $\frac{7}{49}$

Sol: $\frac{7}{49}^1$
~~49~~
 $= \frac{1}{7}$ Ans:

12 $\frac{48}{40}$

Sol: $\frac{48}{40}^{24}$
~~40~~
 $= \frac{24}{20}^{12}$
 $= \frac{12}{10}^6$
 $= \frac{6}{5}$ Ans:

ii Encircle the greater fraction in pairs

1 $(\frac{5}{6}), \frac{5}{9}$ 2 $(\frac{1}{4}), \frac{1}{5}$ 3 $(\frac{9}{11}), \frac{9}{2}$ 4 $(\frac{6}{12}), \frac{6}{13}$
 5 $\frac{3}{6}, (\frac{3}{3})$ 6 $(\frac{1}{9}), \frac{1}{10}$ 7 $\frac{11}{9}, (\frac{12}{9})$ 8 $(\frac{27}{81}), \frac{25}{81}$

iii Encircle the less fraction in pairs.

1 $(\frac{2}{5}), \frac{2}{6}$ 2 $(\frac{3}{7}), \frac{3}{2}$ 3 $(\frac{1}{9}), \frac{1}{7}$ 4 $\frac{2}{6}, (\frac{1}{6})$
 5 $(\frac{11}{20}), \frac{11}{15}$ 6 $\frac{7}{8}, (\frac{7}{6})$ 7 $(\frac{9}{3}), \frac{6}{3}$ 8 $(\frac{8}{81}), \frac{8}{82}$

iv Compare the fraction in the “>” or “<”

1 $\frac{3}{5} \textcircled{<} \frac{7}{9}$ 2 $\frac{21}{15} \textcircled{<} \frac{21}{9}$ 3 $\frac{7}{4} \textcircled{>} \frac{7}{9}$ 4 $\frac{6}{7} \textcircled{<} \frac{8}{9}$
 5 $\frac{5}{4} \textcircled{<} \frac{9}{4}$ 6 $\frac{9}{11} \textcircled{>} \frac{5}{8}$ 7 $\frac{3}{5} \textcircled{>} \frac{2}{6}$ 8 $\frac{2}{7} \textcircled{<} \frac{3}{5}$

ADDITION OF FRACTIONS:

Addition of fractions on the base of equal denominator.
In same denominator fraction, only nominators are added and denominator is obtained same from Both.

Example $\frac{5}{3} + \frac{4}{3}$

Solution $\frac{5+4}{3} = \frac{9}{3} =$

Addition of direct fractions on the base of equal denominators the addition of direct fraction is solved as in same fractions.

Example $\frac{9}{21} + \frac{11}{21}$

Solution $= \frac{9+11}{21} = \frac{18}{21}$

ADDITION OF DIFFERENT DENOMINATOR FRACTIONS:

In different denominator fraction, the denominators of all fractions are formed as equal and then least common multiple of denominators is formed then L.C.M is divided by denominators of all given fraction and answer is multiplied in the nominators L.C.M is denominator and product of nominator is sum of fractions.

Example: Simplify.

$$\begin{aligned} & \frac{4}{7} + \frac{5}{3} \\ \text{Solution: } & \frac{3}{7} \left| \begin{array}{r} 7-3 \\ 7-1 \\ \hline 1-1 \end{array} \right. \\ & = \frac{(3 \times 4) + (7 \times 5)}{21} \\ & = \frac{12 + 35}{21} \\ & = \frac{47}{21} \\ & 7 \times 3 = 21 \end{aligned}$$

Example: Simplify.

$$4\frac{1}{8} + 1\frac{3}{4}$$

Solution:
$$\begin{array}{r} 2 \mid 8-4 \\ 2 \mid 4-2 \\ 2 \mid 2-2 \\ \hline 1-1 \end{array} = 4 + 1 \left(\frac{1}{8} + \frac{3}{4} \right) = 5 \left(\frac{1}{8} + \frac{3}{4} \right) = 5 \frac{1+6}{8} = 5\frac{7}{8}$$

EXERCISE 3.4

Solve:

① $\frac{5}{12} + \frac{9}{2}$

1st method

$$\begin{aligned} \text{Sol: } & = \frac{5}{12} + \frac{9}{2} \\ & = \frac{(5 \times 1) + (9 \times 6)}{12} \\ & = \frac{5 + 54}{12} \\ & = \frac{59}{12} \\ & = 4 \frac{11}{12} \text{ Ans} \end{aligned}$$

R.W

$$\begin{array}{r} 2 \mid 12, 2 \\ 2 \mid 6, 1 \\ 3 \mid 3, 1 \\ \hline 1, 1 \end{array} 2 \times 2 \times 3 = 12$$

$$12 \overline{)59}^4 \begin{array}{r} 4 \\ -48 \\ \hline 11 \end{array}$$

Second method

$$\begin{aligned} \text{Sol: } & = \frac{5}{12} + \frac{9}{2} \\ & = \frac{5 \times 1}{12 \times 1} + \frac{9 \times 6}{2 \times 6} \\ & = \frac{5}{12} + \frac{54}{12} \\ & = \frac{5 + 54}{12} \\ & = \frac{59}{12} \\ & = 4 \frac{11}{12} \text{ Ans} \end{aligned}$$

2) $\frac{3}{14} + \frac{2}{7}$

1st method

$$\text{Sol: } = \frac{3}{14} + \frac{2}{7}$$

$$= \frac{(3 \times 1) + (2 \times 2)}{14}$$

$$= \frac{3 + 4}{14}$$

$$= \frac{7}{14}$$

$$= \frac{1}{2} \text{ Ans}$$

Second method

$$\text{Sol: } = \frac{3}{14} + \frac{2}{7}$$

$$= \frac{3 \times 1}{14 \times 1} + \frac{2 \times 2}{7 \times 2}$$

$$= \frac{3}{14} + \frac{4}{14}$$

$$= \frac{3 + 4}{14}$$

$$= \frac{17}{44}$$

$$= \frac{1}{2} \text{ Ans}$$

R.W

$$\begin{array}{r} 2 | 14, 7 \\ \hline 7 | 7, 1 \\ \hline 1, 1 \end{array}$$

$$2 \times 7 = 14$$

3) $\frac{5}{18} + \frac{7}{9}$

1st method

$$\text{Sol: } = \frac{5}{18} + \frac{7}{9}$$

$$= \frac{(5 \times 1) + (7 \times 2)}{18}$$

$$= \frac{5 + 14}{18}$$

$$= \frac{19}{18}$$

$$= 1 \frac{1}{18} \text{ Ans}$$

R.W

$$\begin{array}{r} 2 | 18, 9 \\ \hline 3 | 9, 9 \\ \hline 3 | 3, 3 \\ \hline 1, 1 \end{array}$$

$$2 \times 3 \times 3 = 18$$

$$18 \sqrt{\begin{array}{r} 1 \\ -18 \\ \hline 01 \end{array}}$$

R.W

$$7 \sqrt{\begin{array}{r} 2 \\ 14 \\ -14 \\ \hline 00 \end{array}}$$

Second method

$$\text{Sol: } = \frac{5}{18} + \frac{7}{9}$$

$$= \frac{5 \times 1}{18 \times 1} + \frac{7 \times 2}{9 \times 2}$$

$$= \frac{5}{18} + \frac{14}{18}$$

$$= \frac{5 + 14}{18}$$

$$= \frac{19}{18}$$

$$= 1 \frac{1}{18} \text{ Ans}$$

4) $\frac{1}{16} + \frac{2}{4} + \frac{1}{8}$

R.W

1st method

$$\begin{array}{c|ccc} 2 & 16, 4, 8 \\ \hline 2 & 8, 2, 4 \\ 2 & 4, 1, 2 \\ 2 & 2, 1, 1 \\ \hline & 1, 1, 1 \end{array}$$

$2 \times 2 \times 2 \times 2 = 18$

Sol: $= \frac{1}{16} + \frac{2}{4} + \frac{1}{8}$

$$= \frac{(1 \times 1) + (2 \times 4) + (1 \times 2)}{16}$$

$$= \frac{1 + 8 + 2}{16}$$

R.W

$$= \frac{11}{16} \text{ Ans}$$

Second method

Sol: $= \frac{1}{16} + \frac{2}{4} + \frac{1}{8}$

$$= \frac{1 \times 1}{14 \times 1} + \frac{2 \times 4}{4 \times 4} + \frac{1 \times 2}{8 \times 2}$$

$$= \frac{1}{16} + \frac{8}{16} + \frac{2}{16}$$

$$= \frac{1 + 8 + 2}{18}$$

$$= \frac{11}{16}$$

$$= 11\frac{1}{5} \text{ Ans}$$

$$11 \overline{)16} \begin{array}{r} 1 \\ -11 \\ \hline 05 \end{array}$$

5) $\frac{4}{2} + \frac{3}{4} + \frac{5}{4}$

R.W

1st method

Sol: $= \frac{4}{2} + \frac{3}{4} + \frac{5}{4}$

$$= \frac{(4 \times 2) + (3 \times 1) + (5 \times 1)}{4}$$

$$= \frac{8 + 3 + 5}{4}$$

$$= \frac{16}{4} = 4 \text{ Ans}$$

Second method

Sol: $= \frac{4}{2} + \frac{3}{4} + \frac{5}{4}$

$$= \frac{4 \times 2}{2 \times 2} + \frac{3 \times 1}{4 \times 1} + \frac{5 \times 1}{4 \times 1}$$

$$= \frac{8}{4} + \frac{3}{4} + \frac{5}{4}$$

$$= \frac{8 + 3 + 5}{4}$$

$$= \frac{16}{4} = 4 \text{ Ans}$$

6 $\frac{3}{10} + \frac{2}{5} + \frac{7}{20}$

R.W

1st method

$$\begin{aligned} \text{Sol: } &= \frac{3}{10} + \frac{2}{5} + \frac{7}{20} \\ &= \frac{(3 \times 2) + (2 \times 4) + (7 \times 1)}{20} \\ &= \frac{6 + 8 + 7}{20} \\ &= \frac{21}{20} \\ &= 1 \frac{1}{20} \text{ Ans} \end{aligned}$$

$$\begin{array}{r} 2 \mid 10, 5, 20 \\ 2 \mid 5, 5, 10 \\ 5 \mid 5, 5, 5 \\ \hline 1, 1, 1 \end{array}$$

$$2 \times 2 \times 5 = 20$$

$$\begin{array}{r} 1 \\ 20 \sqrt{21} \\ \underline{-20} \\ \hline 1 \end{array}$$

Second method

$$\begin{aligned} \text{Sol: } &= \frac{3}{10} + \frac{2}{5} + \frac{7}{20} \\ &= \frac{3 \times 2}{10 \times 2} + \frac{2 \times 4}{5 \times 4} + \frac{7 \times 1}{20 \times 1} \\ &= \frac{6}{20} + \frac{8}{20} + \frac{7}{20} \\ &= \frac{6 + 8 + 7}{20} \\ &= \frac{21}{20} \\ &= 1 \frac{1}{20} \text{ Ans} \end{aligned}$$

7 $\frac{1}{4} + \frac{1}{3} + \frac{1}{2}$

R.W

1st method

$$\begin{aligned} \text{Sol: } &= \frac{1}{4} + \frac{1}{3} + \frac{1}{2} \\ &= \frac{(1 \times 3) + (1 \times 4) + (1 \times 6)}{12} \\ &= \frac{3 + 4 + 6}{12} \\ &= \frac{13}{12} \\ &= 1 \frac{1}{12} \text{ Ans} \end{aligned}$$

$$\begin{array}{r} 2 \mid 4, 3, 2 \\ 2 \mid 2, 3, 1 \\ 3 \mid 1, 3, 1 \\ \hline 1, 1, 1 \end{array}$$

$$2 \times 2 \times 3 = 12$$

$$\begin{array}{r} 1 \\ 12 \sqrt{13} \\ \underline{-12} \\ \hline 1 \end{array}$$

Second method

$$\begin{aligned} \text{Sol: } &= \frac{1}{4} + \frac{1}{3} + \frac{1}{2} \\ &= \frac{1 \times 3}{4 \times 3} + \frac{1 \times 4}{3 \times 4} + \frac{1 \times 6}{2 \times 6} \\ &= \frac{3}{12} + \frac{4}{12} + \frac{6}{12} \\ &= \frac{3 + 4 + 6}{12} \\ &= \frac{13}{12} \\ &= 1 \frac{1}{12} \text{ Ans} \end{aligned}$$

8) $\frac{1}{6} + \frac{2}{3} + \frac{1}{5}$

1st method

Sol: $= \frac{1}{6} + \frac{2}{3} + \frac{1}{5}$

$= \frac{(1 \times 5) + (2 \times 10) + (1 \times 6)}{30}$

$= \frac{5 + 20 + 6}{30}$

$= \frac{31}{30}$

$= 1 \frac{1}{30} \text{ Ans}$

Second method

Sol: $= \frac{1}{6} + \frac{2}{3} + \frac{1}{5}$

$= \frac{1 \times 5}{6 \times 5} + \frac{2 \times 10}{3 \times 10} + \frac{1 \times 6}{5 \times 6}$

$= \frac{5}{30} + \frac{20}{30} + \frac{6}{30}$

$= \frac{5 + 20 + 6}{30}$

$= \frac{31}{30}$

$= 1 \frac{1}{30} \text{ Ans}$

R.W

2	6, 3, 5
3	3, 3, 5
5	1, 1, 5

$2 \times 3 \times 5 = 30$

$$30 \overline{)31} \begin{matrix} 1 \\ -30 \\ \hline 01 \end{matrix}$$

9) $\frac{5}{8} + \frac{1}{12}$

1st method

Sol: $= \frac{5}{8} + \frac{1}{12}$

$= \frac{(5 \times 3) + (1 \times 2)}{24}$

$= \frac{15 + 2}{24}$

$= \frac{17}{24} \text{ Ans}$

Second method

Sol: $= \frac{5}{8} + \frac{1}{12}$

$= \frac{5 \times 3}{8 \times 3} + \frac{1 \times 2}{12 \times 2}$

$= \frac{15}{24} + \frac{2}{24}$

$= \frac{15 + 2}{24}$

$= \frac{17}{24} \text{ Ans}$

10) $2\frac{1}{2} + 4\frac{1}{3}$

R.W

1st method

$$\text{Sol: } = 2\frac{1}{2} + 4\frac{1}{3}$$

$$= \frac{5}{2} + \frac{13}{3}$$

$$= \frac{(5 \times 3) + (13 \times 2)}{6}$$

$$= \frac{15 + 26}{6}$$

$$= \frac{41}{6}$$

$$= 1\frac{5}{6} \text{ Ans}$$

$$\begin{array}{r|rr} 2 & 2, 3 \\ \hline 3 & 1, 3 \\ \hline & 1, 1 \end{array}$$

$$2 \times 3 = 6$$

$$6 \overline{) \begin{array}{r} 1 \\ 41 \\ -36 \\ \hline 05 \end{array}}$$

Second method

$$\text{Sol: } = 2\frac{1}{2} + 4\frac{1}{3}$$

$$= 2 + 4 \left(\frac{1}{2} + \frac{1}{3} \right)$$

$$= 6 \left(\frac{1 \times 3 + 1 \times 2}{6} \right)$$

$$= 6 \left(\frac{3+2}{6} \right)$$

$$= 6 \frac{5}{6} \text{ Ans}$$

11) $1\frac{7}{9} + 1\frac{3}{4}$

R.W

1st method

$$\text{Sol: } = 1\frac{7}{9} + 1\frac{3}{4}$$

$$= \frac{16}{9} + \frac{7}{4}$$

$$= \frac{(16 \times 4) + (7 \times 9)}{36}$$

$$= \frac{64 + 63}{36}$$

$$= \frac{127}{36}$$

$$= 3\frac{19}{36} \text{ Ans}$$

$$\begin{array}{r|rr} 2 & 9, 4 \\ \hline 2 & 9, 2 \\ \hline 3 & 9, 1 \\ \hline 3 & 3, 3 \\ \hline & 1, 1 \end{array}$$

$$2 \times 2 \times 3 \times 3 = 36$$

$$36 \times 3 = 108$$

$$36 \overline{) \begin{array}{r} 127 \\ -108 \\ \hline 19 \end{array}}$$

Second method

$$\text{Sol: } = 1\frac{7}{9} + 1\frac{3}{4}$$

$$= \frac{16}{9} + \frac{7}{4}$$

$$= \frac{16 \times 4}{9 \times 4} + \frac{7 \times 9}{4 \times 9}$$

$$= \frac{64}{36} + \frac{63}{36}$$

$$= \frac{64 + 63}{36}$$

$$= \frac{127}{36}$$

$$= 3\frac{19}{36} \text{ Ans}$$

$$(12) \quad 6\frac{3}{4} + 4\frac{1}{10}$$

R.W

1st method

$$\begin{array}{r} 2 \\ \hline 2 \\ \hline 5 \\ \hline 1, 1 \end{array}$$

$$\text{Sol: } = 6\frac{3}{4} + 4\frac{1}{10}$$

$$2 \times 2 \times 3 = 20$$

$$= \frac{27}{4} + \frac{41}{10}$$

$$= \frac{(27 \times 5) + (41 \times 2)}{20}$$

$$= \frac{135 + 82}{20}$$

$$= \frac{217}{20}$$

$$= 10\frac{17}{20} \text{ Ans}$$

Second method

$$20 \left[\begin{array}{r} 10 \\ -200 \\ \hline 17 \end{array} \right]$$

$$\text{Sol: } = 6\frac{3}{4} + 4\frac{1}{10}$$

$$= \frac{27}{4} + \frac{41}{10}$$

$$= \frac{27 \times 5}{4 \times 5} + \frac{41 \times 2}{10 \times 2}$$

$$= \frac{135}{20} + \frac{82}{20}$$

$$= \frac{135 + 82}{20}$$

$$= \frac{217}{20}$$

$$= 10\frac{17}{20} \text{ Ans}$$

SUBTRACTION OF FRACTIONS:

In subtraction of fraction, we find least common multiple of denominators and the all function are solved as addition then nominators are subtracted.

Example:

$$\frac{4}{8} - \frac{1}{4}$$

Solution:

$$\begin{array}{r} 2 \\ \hline 2 \\ \hline 2 \\ \hline 1 - 1 \end{array} = \frac{(4 \times 1) - (1 \times 2)}{8}$$

$$= \frac{4 + 2}{8}$$

$$2 \times 2 \times 1 = 8$$

$$= \frac{2}{8} = \frac{1}{4}$$

Example:

$$5\frac{3}{7} - 2\frac{1}{6}$$

Solution:

$$\begin{array}{r} 6 \\ \hline 7 \\ \hline 7 \\ \hline 1 - 1 \end{array} = 5 - 2 \left(\frac{3}{7} - \frac{1}{6} \right)$$

$$6 \times 7 = 42$$

$$= 3 \frac{18 + 7}{42}$$

$$= 3\frac{11}{42}$$

EXERCISE 3.5

Perform the difference between mixed fraction.

$$1 \quad 3\frac{1}{8} - 1\frac{2}{3}$$

First method

$$\text{Sol: } = 3\frac{1}{8} - 1\frac{2}{3}$$

$$= \frac{25}{8} - \frac{5}{3}$$

$$= \frac{(25 \times 3) - (5 \times 8)}{24}$$

$$= \frac{75 - 40}{24}$$

$$= \frac{35}{24}$$

$$= 1 \frac{11}{24} \text{ Ans}$$

R.W

$$\begin{array}{r} 2 \mid 8, 3 \\ 2 \mid 4, 3 \\ 2 \mid 2, 3 \\ 3 \mid 1, 3 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 2 \times 3 = 24$$

$$24 \left[\begin{array}{r} 1 \\ 35 \\ -24 \\ \hline 11 \end{array} \right]$$

Second method

$$\text{Sol: } = 3\frac{1}{8} - 1\frac{2}{3}$$

$$= \frac{25}{8} - \frac{5}{3}$$

$$= \frac{25 \times 3}{8 \times 3} - \frac{5 \times 8}{3 \times 8}$$

$$= \frac{75}{24} - \frac{40}{24}$$

$$= \frac{75 - 40}{24}$$

$$= \frac{35}{24}$$

$$= 1 \frac{11}{24} \text{ Ans}$$

$$2 \quad 9\frac{3}{7} - 3\frac{4}{5}$$

R.W

First method

$$\text{Sol: } = 9\frac{3}{7} - 3\frac{4}{5}$$

$$= \frac{66}{7} - \frac{19}{5}$$

$$= \frac{(66 \times 5) - (19 \times 7)}{35}$$

$$= \frac{330 - 133}{354}$$

$$= \frac{197}{35}$$

$$= 5 \frac{22}{35} \text{ Ans}$$

$$\begin{array}{r} 5 \mid 7, 5 \\ 7 \mid 7, 1 \\ \hline 1, 1 \end{array}$$

$$5 \times 7 = 35$$

$$\begin{array}{r} 5 \\ 35 \mid 197 \\ \hline -175 \\ \hline 22 \end{array}$$

Second method

$$\text{Sol: } = 9\frac{3}{7} - 3\frac{4}{5}$$

$$= \frac{66}{7} - \frac{19}{5}$$

$$= \frac{66 \times 5}{7 \times 5} - \frac{19 \times 7}{5 \times 7}$$

$$= \frac{330}{35} - \frac{133}{35}$$

$$= \frac{330 - 133}{35}$$

$$= \frac{197}{35}$$

$$= 5 \frac{22}{35} \text{ Ans}$$

3) $\frac{4}{5} - \frac{3}{7}$

R.W

First method

$$\text{Sol: } = \frac{4}{5} - \frac{3}{7}$$

$$= \frac{4 \times 7 - 3 \times 5}{35}$$

$$= \frac{28 - 15}{35}$$

$$= \frac{13}{35} \text{ Ans}$$

$$\begin{array}{r} 5 \\ \hline 7 \\ \hline 1, 1 \end{array}$$

$$5 \times 7 = 35$$

Second method

$$\text{Sol: } = \frac{4}{5} - \frac{3}{7}$$

$$= \frac{4 \times 7}{5 \times 7} - \frac{3 \times 5}{7 \times 5}$$

$$= \frac{28}{35} - \frac{15}{35}$$

$$= \frac{28-15}{35}$$

$$= \frac{13}{35} \text{ Ans}$$

4) $\frac{7}{4} - \frac{4}{5}$

R.W

First method

$$\text{Sol: } = \frac{7}{4} - \frac{4}{5}$$

$$= \frac{(7 \times 5) - (4 \times 4)}{20}$$

$$= \frac{35 - 16}{20}$$

$$= \frac{19}{20} \text{ Ans}$$

$$\begin{array}{r} 2 \\ \hline 2 \\ \hline 5 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 5 = 20$$

Second method

$$\text{Sol: } = \frac{7}{4} - \frac{4}{5}$$

$$= \frac{7 \times 5}{4 \times 5} - \frac{4 \times 4}{5 \times 4}$$

$$= \frac{35}{20} - \frac{16}{20}$$

$$= \frac{35-16}{20}$$

$$= \frac{19}{20} \text{ Ans}$$

5 $\frac{15}{6} - \frac{7}{3}$

R.W

First method

$$\begin{aligned} \text{Sol: } &= \frac{15}{6} - \frac{7}{3} \\ &= \frac{(15 \times 1) - (7 \times 2)}{6} \\ &= \frac{15 - 14}{6} \\ &= \frac{1}{6} \quad \text{Ans} \end{aligned}$$

$$\begin{array}{r} 2 \mid 6, 3 \\ 3 \mid 3, 3 \\ \hline 1, 1 \end{array}$$

$$2 \times 3 = 6$$

Second method

$$\begin{aligned} \text{Sol: } &= \frac{15}{6} - \frac{7}{3} \\ &= \frac{15 \times 1}{6 \times 1} - \frac{7 \times 2}{3 \times 2} \\ &= \frac{15}{6} - \frac{14}{6} \\ &= \frac{15 - 14}{6} \\ &= \frac{1}{6} \quad \text{Ans} \end{aligned}$$

6 $6\frac{3}{4} - 3\frac{1}{2}$

R.W

First method

$$\begin{aligned} \text{Sol: } &= 6\frac{3}{4} - 3\frac{1}{2} \\ &= \frac{27}{4} - \frac{7}{2} \\ &= \frac{(27 \times 1) - (7 \times 2)}{4} \\ &= \frac{27 - 14}{4} \\ &= \frac{13}{4} \\ &= 3 \frac{1}{4} \quad \text{Ans} \end{aligned}$$

$$\begin{array}{r} 2 \mid 4, 2 \\ 2 \mid 2, 1 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 = 4$$

$$\begin{array}{r} 3 \\ 4 \sqrt{13} \\ \underline{-12} \\ 01 \end{array}$$

Second method

$$\begin{aligned} \text{Sol: } &= 6\frac{3}{4} - 3\frac{1}{2} \\ &= \frac{27}{4} - \frac{7}{2} \\ &= \frac{27 \times 1}{4 \times 1} - \frac{7 \times 2}{2 \times 2} \\ &= \frac{27}{4} - \frac{14}{4} \\ &= \frac{27 - 14}{4} \\ &= \frac{13}{4} \\ &= 3 \frac{1}{4} \quad \text{Ans} \end{aligned}$$

7 $\frac{7}{8} - \frac{2}{4}$

R.W

First method

$$\text{Sol: } = \frac{7}{8} - \frac{2}{4}$$

$$= \frac{(7 \times 1) - (2 \times 2)}{8}$$

$$= \frac{7 - 4}{8}$$

$$= \frac{3}{8} \text{ Ans}$$

$$\begin{array}{r} 2 \\ \hline 2 & 8, 4 \\ 2 & 4, 2 \\ \hline 2 & 2, 1 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 2 = 8$$

Second method

$$\text{Sol: } = \frac{7}{8} - \frac{2}{4}$$

$$= \frac{7 \times 1}{8 \times 1} - \frac{2 \times 2}{4 \times 2}$$

$$= \frac{7}{8} - \frac{4}{8}$$

$$= \frac{7 - 4}{8}$$

$$= \frac{3}{8} \text{ Ans}$$

8 $3\frac{1}{4} - 2\frac{3}{4}$

First method

$$\text{Sol: } = 3\frac{1}{4} - 2\frac{3}{4}$$

$$= \frac{13}{4} - \frac{11}{4}$$

$$= \frac{13 - 11}{4}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2} \text{ Ans}$$

9 $\frac{7}{8} - \frac{1}{7}$

R.W

First method

$$\text{Sol: } = \frac{7}{8} - \frac{1}{7}$$

$$= \frac{(7 \times 7) - (1 \times 8)}{56}$$

$$= \frac{49 - 8}{56}$$

$$\begin{array}{r} 2 \\ \hline 2 & 8, 7 \\ 2 & 4, 7 \\ \hline 2 & 2, 7 \\ \hline 7 & 1, 7 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 2 \times 7 = 56$$

$$= \frac{41}{56} \text{ Ans}$$

Second method

$$\text{Sol: } = \frac{7}{8} - \frac{1}{7}$$

$$= \frac{7 \times 7}{8 \times 7} - \frac{1 \times 8}{7 \times 8}$$

$$= \frac{49}{56} - \frac{8}{56}$$

$$= \frac{41}{56} \text{ Ans}$$

10) $\frac{27}{12} - \frac{5}{3}$

First method

Sol: $= \frac{27}{12} - \frac{5}{3}$

$= \frac{(27 \times 1) - (5 \times 4)}{12}$

$= \frac{27 - 20}{12}$

$= \frac{7}{12} \text{ Ans}$

R.W

2	12, 3
2	6, 3
3	3, 3
1	1

$2 \times 2 \times 3 = 12$

Second method

Sol: $= \frac{27}{12} - \frac{5}{3}$

$= \frac{27 \times 1}{12 \times 1} - \frac{5 \times 4}{3 \times 4}$

$= \frac{27}{12} - \frac{20}{12}$

$= \frac{27 - 20}{12}$

$= \frac{7}{12} \text{ Ans}$

ii) $\frac{5}{8} - \frac{1}{12}$

First method

Sol: $= \frac{5}{8} - \frac{1}{12}$

$= \frac{(5 \times 3) - (1 \times 2)}{24}$

$= \frac{15 - 2}{24}$

$= \frac{13}{24} \text{ Ans}$

R.W

2	8, 12
2	4, 6
2	2, 3
3	1, 3
1	1

$2 \times 2 \times 2 \times 3 = 24$

Second method

Sol: $= \frac{5}{8} - \frac{1}{12}$

$= \frac{5 \times 3}{8 \times 3} - \frac{1 \times 2}{12 \times 2}$

$= \frac{15}{24} - \frac{2}{24}$

$= \frac{15 - 2}{24}$

$= \frac{13}{24} \text{ Ans}$

(12) $\frac{3}{4} - \frac{1}{5}$

R.W

First method

$$\text{Sol: } = \frac{3}{4} - \frac{1}{5}$$

$$= \frac{(3 \times 5) - 1 \times 4}{20}$$

$$= \frac{15 - 4}{20}$$

$$= \frac{11}{24} \text{ Ans}$$

2	4, 5
2	2, 5
5	1, 5
	1, 1

$$2 \times 2 \times 5 = 20$$

Second method

$$\text{Sol: } = \frac{3}{4} - \frac{1}{5}$$

$$= \frac{3 \times 5}{4 \times 5} - \frac{1 \times 4}{5 \times 4}$$

$$= \frac{15}{20} - \frac{4}{20}$$

$$= \frac{15 - 4}{20}$$

$$= \frac{11}{20} \text{ Ans}$$

MULTIPLICATION OF COMMON FRACTION

To know the result of common fractions, numerators are multiplied with numerators and denominators are multiplied with the denominators and fraction is written in shortest form.

Multiplication of the fractions =

$$\frac{\text{Nominator of first fraction} \times \text{Nominator of second fraction}}{\text{Denominator of first fraction} \times \text{denominator second fraction}}$$

Example: $\frac{7}{8} \times \frac{2}{4}$

Solution: $\frac{7}{8} \times \frac{3}{21} = \frac{9}{7}$

Example: $\frac{13}{26} \times \frac{117}{52}$

Solution: $\frac{13}{26} \times \frac{117}{52} = \frac{9}{8}$

EXERCISE 3.6

Q.1: Solve.

1) $\frac{21}{42} \times \frac{64}{63}$

Sol: $= \frac{21}{42} \times \frac{64}{63}$

$$= \frac{1}{2} \times \frac{32}{3}$$

$$= \frac{1}{21} \times \frac{32}{3}$$

$$= \frac{32}{63} \text{ Ans:}$$

2) $\frac{219}{13} \times \frac{52}{415}$

Sol: $= \frac{219}{13} \times \frac{52}{415}$

$$= \frac{876}{415} \text{ Ans:}$$

R.W

$$\frac{219}{415} \times 4$$

3) $\frac{28}{45} \times \frac{9}{63} \times \frac{18}{15}$

Sol: $= \frac{428}{4515} \times \frac{9^3}{63^9} \times \frac{18}{15}$
 $= \frac{4}{15} \times \frac{13}{9} \times \frac{18}{15}$
 $= \frac{4}{15} \times \frac{1}{1} \times \frac{2}{5}$
 $= \frac{8}{75} \text{ Ans:}$

4) $\frac{21}{4} \times \frac{28}{63} \times \frac{2}{7}$

Sol: $= \frac{21^3}{4^1} \times \frac{28^4}{63^9} \times \frac{2}{7^1}$
 $= \frac{3}{4} \times \frac{4}{9} \times \frac{2}{1}$
 $= \frac{2}{3} \text{ Ans:}$

5) $5\frac{7}{8} \times 3\frac{4}{5}$

Sol: $= 5\frac{7}{8} \times 3\frac{4}{5}$ | R.W
 $= \frac{47}{8} \times \frac{19}{5}$
 $= \frac{893}{40} \text{ Ans:}$

6) $\frac{8}{15} \times \frac{24}{16}$

Sol: $= \frac{8^1}{15^5} \times \frac{24^8}{16^2}$
 $= \frac{8^4}{10^5}$
 $= \frac{4}{10} \text{ Ans:}$

7) $36 \times \frac{3}{4}$

Sol: $= 36 \times \frac{3}{4}$
 $= \frac{36}{1} \times \frac{3}{4}$
 $= 27 \text{ Ans:}$

9) $2\frac{5}{6} \times 1\frac{3}{5}$

Sol: $= 2\frac{5}{6} \times 1\frac{3}{5}$
 $= \frac{17}{6} \times \frac{8^4}{5}$
 $= \frac{68}{15} \text{ Ans:}$

8) $6\frac{7}{8} \times 4\frac{4}{5}$

Sol: $= 6\frac{7}{8} \times 4\frac{4}{5}$
 $= \frac{55}{8} \times \frac{24^3}{5}$
 $= 33 \text{ Ans:}$

10) $39 \times \frac{2}{13}$

Sol: $= 39 \times \frac{2}{13}$
 $= \frac{39}{1} \times \frac{2}{13}$
 $= 6 \text{ Ans:}$

11) $\frac{4}{12} \times \frac{4}{9} \times \frac{6}{2}$

Sol: $= \frac{4}{12} \times \frac{4^2}{9} \times \frac{6}{12}$
 $= \frac{4}{12} \times \frac{2}{9} \times \frac{6}{1}$
 $= \frac{4}{6} \times \frac{1}{9} \times \frac{6^1}{1}$
 $= \frac{4}{9} \text{ Ans:}$

12) $\frac{6}{12} \times \frac{9}{2} \times \frac{15}{3}$

Sol: $= \frac{6^3}{12^1} \times \frac{9^3}{12^1} \times \frac{15}{3}$
 $= \frac{3}{12} \times \frac{3^1}{1} \times \frac{15}{1}$
 $= \frac{3}{4} \times \frac{1}{1} \times \frac{15}{1}$
 $= \frac{45}{4}$

PROPERTIES OF ADDITION OF FRACTION

Property of addition of fraction: As we know that in changing place of two natural numbers, the result becomes same so that changing of place of two fractions, the sum become same.

Example:

$$\begin{aligned} \frac{1}{2} + \frac{3}{3} &= \frac{3}{3} + \frac{1}{2} \\ \text{L.H.S} &= \text{R.H.S} \\ \frac{1}{2} + \frac{3}{3} &= \frac{3}{3} + \frac{1}{2} \\ \frac{3+6}{6} &= \frac{6+3}{3} \\ \frac{3+6}{6} &= \frac{6+3}{3} \\ \frac{3}{2} &= \frac{3}{2} \end{aligned}$$

Hence proved L.H.S = R.H.S

EXERCISE 3.7

Prove that the property of (commutative Law) for addition and also associative Law.

$$1 \text{ } ① \frac{1}{2} + \frac{3}{5} = \frac{3}{5} + \frac{1}{2}$$

R.W

$$\text{Sol: } \frac{1}{2} + \frac{3}{5} = \frac{3}{5} + \frac{1}{2}$$

$$\text{L.H.S} = \text{R.H.S}$$

$$= \frac{(1 \times 5) + (3 \times 2)}{10} = \frac{(3 \times 2) + (1 \times 5)}{10}$$

$$= \frac{5+6}{10} = \frac{6+5}{10}$$

$$= \frac{11}{10} = \frac{11}{10}$$

$$\begin{array}{c|cc} 2 & 2, 5 \\ \hline 5 & 1, 5 \\ \hline & 1, 1 \end{array}$$

$$2 \times 5 = 10$$

Hence proved L.H.S = R.H.S

$$2 \text{ } ② \frac{7}{8} + \frac{3}{6} = \frac{3}{6} + \frac{7}{8}$$

R.W

$$\text{Sol: } \frac{7}{8} + \frac{3}{6} = \frac{3}{6} + \frac{7}{8}$$

$$\text{L.H.S} = \text{R.H.S}$$

$$= \frac{(7 \times 3) + (3 \times 4)}{24} = \frac{(3 \times 4) + (7 \times 3)}{10}$$

$$= \frac{21+12}{24} = \frac{12+21}{24}$$

$$= \frac{33}{24} = \frac{33}{24}$$

$$= 1 \frac{9}{24} = 1 \frac{9}{24}$$

$$\begin{array}{c|cc} 2 & 8, 6 \\ \hline 2 & 4, 3 \\ \hline 2 & 2, 3 \\ \hline 3 & 1, 3 \\ \hline & 1, 1 \end{array}$$

$$2 \times 2 \times 2 \times 3 = 24$$

Hence proved L.H.S = R.H.S

$$3 \text{ } ③ \frac{11}{3} + \frac{7}{8} = \frac{7}{8} + \frac{11}{3}$$

R.W

$$\text{Sol: } \frac{11}{3} + \frac{7}{8} = \frac{7}{8} + \frac{11}{3}$$

$$\text{L.H.S} = \text{R.H.S}$$

$$= \frac{(11 \times 8) + (7 \times 3)}{24} = \frac{(7 \times 3) + (11 \times 8)}{24}$$

$$= \frac{88+21}{24} = \frac{21+88}{24}$$

$$= \frac{109}{24} = \frac{109}{24}$$

$$= 4 \frac{13}{24} = 4 \frac{13}{24}$$

$$\begin{array}{c|cc} 2 & 3, 8 \\ \hline 2 & 3, 4 \\ \hline 2 & 3, 2 \\ \hline 3 & 3, 1 \\ \hline & 1, 1 \end{array}$$

$$2 \times 2 \times 2 \times 3 = 24$$

$$\begin{array}{c|cc} 24 & 109 \\ \hline & 96 \\ \hline & 13 \end{array}$$

Hence proved L.H.S = R.H.S

$$4 \text{ } ④ \frac{8}{9} + \frac{7}{11} = \frac{7}{11} + \frac{8}{9}$$

R.W

$$\text{Sol: } \frac{8}{9} + \frac{7}{11} = \frac{7}{11} + \frac{8}{9}$$

$$\text{L.H.S} = \text{R.H.S}$$

$$= \frac{(8 \times 11) + (7 \times 9)}{99} = \frac{(7 \times 9) + (8 \times 11)}{99}$$

$$= \frac{88+63}{99} = \frac{63+88}{99}$$

$$= \frac{151}{99} = \frac{151}{99}$$

$$= 1 \frac{52}{99} = 1 \frac{52}{99}$$

$$\begin{array}{c|cc} 3 & 9, 11 \\ \hline 3 & 3, 11 \\ \hline 11 & 1, 11 \\ \hline & 1, 1 \end{array}$$

$$3 \times 3 \times 11 = 99$$

$$\begin{array}{c|cc} 99 & 151 \\ \hline & 99 \\ \hline & 52 \end{array}$$

Hence proved L.H.S = R.H.S

5. $\frac{5}{6} + \frac{3}{4} = \frac{3}{4} + \frac{5}{6}$

R.W

Sol: $\frac{5}{6} + \frac{3}{4} = \frac{3}{4} + \frac{5}{6}$
 L.H.S = R.H.S
 $= \frac{(5 \times 2) + (3 \times 3)}{12} = \frac{(3 \times 3) + (5 \times 2)}{12}$
 $= \frac{10+9}{12} = \frac{9+10}{12}$
 $= \frac{19}{12} = \frac{19}{12}$
 $= 1 \frac{7}{12} = 1 \frac{7}{12}$

$$\begin{array}{c} 2 \mid 6, 4 \\ 2 \mid 3, 2 \\ \hline 3 \mid 3, 1 \\ \hline 1, 1 \end{array}$$

$2 \times 2 \times 3 = 12$

$$12 \overline{) \begin{array}{r} 1 \\ 19 \\ -12 \\ \hline 7 \end{array}}$$

Hence proved L.H.S = R.H.S

6. $3 \frac{2}{6} + 3 \frac{1}{5} = 3 \frac{1}{5} + 3 \frac{2}{6}$

R.W

Sol: $3 \frac{2}{6} + 3 \frac{1}{5} = 3 \frac{1}{5} + 3 \frac{2}{6}$
 L.H.S = R.H.S
 $= \frac{(20 \times 5) + (16 \times 6)}{30} = \frac{(16 \times 6) + 20 \times 5}{30}$
 $= \frac{100+96}{30} = \frac{96+100}{30}$
 $= \frac{98}{30} = \frac{98}{30}$
 $= \frac{98}{15} = \frac{98}{15}$
 $= 6 \frac{8}{15} = 6 \frac{8}{15}$

$$\begin{array}{c} 2 \mid 6, 5 \\ 3 \mid 3, 5 \\ \hline 5 \mid 1, 51 \\ \hline 1, 1 \end{array}$$

$2 \times 3 \times 6 = 30$

$$15 \overline{) \begin{array}{r} 6 \\ 98 \\ -90 \\ \hline 8 \end{array}}$$

Hence proved L.H.S = R.H.S

7. $\frac{1}{2} + \left(\frac{2}{4} + \frac{5}{6} \right) = \left(\frac{1}{2} + \frac{2}{4} \right) + \frac{5}{6}$

R.W

$$\begin{array}{c} 2 \mid 4, 6 \\ 2 \mid 2, 3 \\ 3 \mid 1, 3 \\ \hline 1, 1 \\ 2 \times 2 \times 3 = 12 \end{array}$$

$$\begin{array}{c} 2 \mid 2, 4 \\ 2 \mid 1, 4 \\ \hline 1, 1 \\ 2 \times 2 = 4 \end{array}$$

$$\begin{array}{c} 2 \mid 2, 12 \\ 2 \mid 1, 6 \\ 3 \mid 1, 3 \\ \hline 1, 1 \\ 2 \times 2 \times 3 = 12 \end{array}$$

Sol: $\frac{1}{2} + \left(\frac{2}{4} + \frac{5}{6} \right) = \left(\frac{1}{2} + \frac{2}{4} \right) + \frac{5}{6}$

L.H.S = R.H.S

$$\begin{aligned} &= \frac{1}{2} + \left(\frac{(2 \times 3) + (5 \times 2)}{12} \right) = \left(\frac{(1 \times 2) + (2 \times 1)}{4} \right) + \frac{5}{6} \\ &= \frac{1}{2} + \left(\frac{6+10}{12} \right) = \left(\frac{2+2}{4} \right) + \frac{5}{6} \\ &= \frac{1}{2} + \frac{16}{12} = \left(\frac{4}{4} \right) + \frac{5}{6} \\ &= \frac{1}{2} + \frac{16}{12} = \frac{4}{4} + \frac{5}{6} \end{aligned}$$

$= \frac{(1 \times 6) + (16 \times 1)}{12} = \frac{(4 \times 3) + (5 \times 2)}{4}$

$$\begin{aligned} &= \frac{6+16}{12} = \frac{12+10}{12} \\ &= \frac{22}{12} = \frac{22}{12} \end{aligned}$$

$= 1 \frac{10}{12} = 1 \frac{10}{12}$

Hence proved L.H.S = R.H.S

8 $\left(\frac{7}{9} + \frac{5}{4}\right) + \frac{11}{3} = \frac{7}{9} + \left(\frac{5}{4} + \frac{11}{3}\right)$

Sol: $= \left(\frac{7}{9} + \frac{5}{4}\right) + \frac{11}{3} = \frac{7}{9} + \left(\frac{5}{4} + \frac{11}{3}\right)$

L.H.S = R.H.S

$= \left(\frac{(7 \times 4) + (5 \times 9)}{36}\right) + \frac{11}{3} = \frac{7}{6} + \left(\frac{(5 \times 3) + (11 \times 4)}{12}\right)$

$= \left(\frac{28 + 45}{36}\right) + \frac{11}{3} = \frac{7}{6} + \left(\frac{15 + 44}{12}\right)$

$= \frac{73}{36} + \frac{11}{3} = \frac{7}{9} + \frac{59}{12}$

$= \frac{(73 \times 1) + (11 \times 12)}{36} = \frac{(7 \times 4) + (59 \times 3)}{36}$

$= \frac{73 + 132}{36} = \frac{28 + 177}{36}$

$= \frac{205}{36} = \frac{205}{36}$

$= 5 \frac{25}{36} = 5 \frac{25}{36}$

Hence proved L.H.S = R.H.S

R.W

$$\begin{array}{r} 2 | 9, 4 \\ 2 | 9, 2 \\ 3 | 9, 1 \\ 3 | 3, 1 \\ \hline 1, 1 \end{array}$$

$2 \times 2 \times 3 \times 3 = 36$

$$\begin{array}{r} 2 | 4, 3 \\ 2 | 2, 3 \\ 3 | 1, 3 \\ \hline 1, 1 \end{array}$$

$2 \times 2 \times 3 = 12$

$$\begin{array}{r} 2 | 36, 3 \\ 2 | 18, 3 \\ 3 | 9, 3 \\ \hline 3 | 3, 1 \\ \hline 1, 1 \end{array}$$

$2 \times 2 \times 3 \times 3 = 36$

$$\begin{array}{r} 2 | 9, 12 \\ 2 | 9, 6 \\ 3 | 9, 3 \\ \hline 3 | 3, 1 \\ \hline 1, 1 \end{array}$$

$2 \times 2 \times 3 \times 3 = 36$

DIVISION FRACTIONS

We know that division is inverse of multiplication so that symbol (\div) is changed in (\times)

Example: $\frac{15}{3} \div \frac{20}{18}$

Solution: $\frac{15}{3} \times \frac{18}{20} =$

$$\frac{^3 \cancel{15}}{^1 \cancel{3}} \times \frac{^4 \cancel{18} \cancel{+ 3}}{^2 \cancel{20} \cancel{+ 2}}$$

$$\frac{3 \times 3}{2} =$$

$$\frac{9}{2} =$$

Example: $3 \frac{4}{7} \div 7 \frac{6}{7}$

Solution: $\frac{25}{7} \div \frac{55}{7} =$

$$\frac{25}{7} \times \frac{7}{55} =$$

$$\frac{^5 \cancel{25}}{^1 \cancel{7}} \times \frac{55 \cancel{1}}{^7 \cancel{11}} =$$

$$\frac{5}{11} =$$

EXERCISE 3.8

Perform the division.

1 $\frac{18}{5} \div \frac{21}{25}$

Sol: $= \frac{18}{5} \div \frac{21}{25}$

$$= \frac{^6 \cancel{18}}{^5 \cancel{1}} \times \frac{^5 \cancel{25}}{^2 \cancel{1} + 7}$$

$$= \frac{6}{1} \times \frac{5}{7}$$

$$= \frac{30}{7}$$

$$= 4 \frac{2}{7}$$

Ans:

2 $60 \div \frac{30}{9}$

Sol: $= 60 \div \frac{30}{9}$

$$= \frac{^2 \cancel{60}}{^1 \cancel{1}} \times \frac{9}{^3 \cancel{30} \cancel{1}}$$

$$= \frac{18}{1}$$

$$= 18$$

Ans:

3 $\frac{14}{7} \div 2$

Sol: $= \frac{14}{7} \div 2$

$$= \frac{14}{7} \div \frac{2}{1}$$

$$= \frac{^7 \cancel{14}}{^7 \cancel{1}} \times \frac{1}{^2 \cancel{2} \cancel{1}}$$

$$= \frac{7}{7}$$

Ans:

4 $\frac{48}{7} \div \frac{12}{21}$

Sol: $= \frac{48}{7} \div \frac{12}{21}$

$$= \frac{^4 \cancel{48}}{^7 \cancel{1}} \times \frac{^2 \cancel{1} \cancel{3}}{^1 \cancel{2} \cancel{1}}$$

$$= \frac{4}{1} \times \frac{3}{1}$$

$$= \frac{12}{1}$$

Ans:

5 $9\frac{5}{7} \div 4\frac{2}{9}$

$$\begin{array}{r} 34 \\ \times 9 \\ \hline 306 \end{array}$$

Sol: $= 9\frac{5}{7} \div 4\frac{2}{9}$

$$\begin{array}{r} 68 \\ 7 \quad \div 38 \\ \hline 19 \\ \times 7 \\ \hline 133 \end{array}$$

$$\begin{array}{r} 34 \frac{68}{7} \times \frac{9}{19} \\ \hline 38 \end{array}$$

$$\begin{array}{r} 34 \\ 7 \quad \times \frac{9}{19} \\ \hline 306 \end{array}$$

$$\begin{array}{r} 306 \\ 133 \quad \underline{-266} \\ \hline 40 \end{array}$$

$$= 2\frac{40}{133} \text{ Ans:}$$

6 $\frac{125}{21} \div \frac{25}{28}$

Sol: $= \frac{125}{21} \div \frac{25}{28}$

$$\begin{array}{r} 25 \frac{125}{21} \times \frac{28}{25} \\ \hline 25 \end{array}$$

$$\begin{array}{r} 5 \frac{25}{3} \times \frac{4}{5} \\ \hline 20 \end{array}$$

$$\begin{array}{r} 5 \\ 3 \quad \times \frac{4}{1} \\ \hline 20 \\ -18 \\ \hline 02 \end{array}$$

$$= 6\frac{2}{3} \text{ Ans:}$$

7 $5\frac{3}{5} \div 4\frac{1}{5}$

Sol: $= 5\frac{3}{5} \div 4\frac{1}{5}$

$$\begin{array}{r} 28 \\ 5 \quad \div 21 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 4 \frac{28}{5} \times \frac{5}{21} \\ \hline 4 \end{array}$$

$$\begin{array}{r} 4 \\ 1 \quad \times \frac{1}{3} \\ \hline 4 \\ -3 \\ \hline 1 \end{array}$$

$$= 1\frac{1}{3} \text{ Ans:}$$

8 $\frac{6}{9} \div \frac{12}{18}$

Sol: $= \frac{6}{9} \div \frac{12}{18}$

$$\begin{array}{r} 1 \frac{6}{9} \times \frac{18}{12} \\ \hline 18 \end{array}$$

$$\begin{array}{r} 1 \\ 1 \quad \times \frac{2}{2} \\ \hline 2 \end{array}$$

$$= 1 \text{ Ans:}$$

9 $6\frac{3}{7} \div 4\frac{2}{7}$

Sol: $= 6\frac{3}{7} \div 4\frac{2}{7}$

$$\begin{array}{r} 45 \\ 7 \quad \times 30 \\ \hline 15 \end{array}$$

$$\begin{array}{r} 3 \frac{15}{7} \times \frac{1}{10} \\ \hline 4 \\ -3 \\ \hline 1 \end{array}$$

$$= \frac{3}{2} \times \frac{1}{2}$$

$$= \frac{3}{2}$$

$$= 1\frac{1}{2} \text{ Ans:}$$

10 $\frac{63}{72} \div \frac{45}{54}$

Sol: $= \frac{63}{72} \div \frac{45}{54}$

$$\begin{array}{r} 21 \frac{63}{72} \times \frac{54}{45} \\ \hline 36 \end{array}$$

$$\begin{array}{r} 7 \frac{21}{36} \times \frac{27}{45} \\ \hline 1 \end{array}$$

$$\begin{array}{r} 7 \\ 4 \quad \times \frac{9}{5} \\ \hline 21 \\ -20 \\ \hline 1 \end{array}$$

$$= \frac{7}{4} \times \frac{3}{5}$$

$$= \frac{21}{20}$$

$$= 1\frac{1}{20} \text{ Ans:}$$

11 $\frac{4}{5} \div \frac{28}{25}$

Sol: $= \frac{4}{5} \div \frac{28}{25}$

$$\begin{array}{r} 2 \frac{4}{5} \times \frac{25}{28} \\ \hline 14 \end{array}$$

$$\begin{array}{r} 1 \frac{2}{5} \times \frac{5}{14} \\ \hline 7 \end{array}$$

$$= \frac{1}{1} \times \frac{5}{14}$$

$$= \frac{5}{7} \text{ Ans:}$$

12 $\frac{31}{32} \div \frac{93}{16}$

Sol: $= \frac{31}{32} \div \frac{93}{16}$

$$\begin{array}{r} 31 \\ 32 \quad \times 93 \\ \hline 93 \end{array}$$

$$\begin{array}{r} 1 \frac{31}{32} \times \frac{16}{93} \\ \hline 3 \\ 16 \\ -93 \\ \hline 64 \end{array}$$

$$\begin{array}{r} 7 \\ 4 \quad \times \frac{9}{5} \\ \hline 21 \\ -20 \\ \hline 1 \end{array}$$

$$= \frac{7}{4} \times \frac{9}{5}$$

$$= \frac{1}{6} \text{ Ans:}$$

THE ADDITION SUBTRACTION, MULTIPLICATION AND DIVISION
OF DAILY LIFE PROBLEMS ON THE BASE OF FRACTIONS

Akram completed $\frac{2}{7}$ a part work in one day, $\frac{3}{7}$ part work on second day and $\frac{1}{7}$ part work completed on third, find the completed work in three days.

Solution: Akram work on first day = $\frac{2}{7}$
 on second day = $\frac{3}{7}$
 on third day = $\frac{4}{7}$
 Total work = $\frac{2}{7} + \frac{3}{7} + \frac{4}{7}$
 = $\frac{2+3+4}{7}$
 = $\frac{9}{7}$

(2) A pocket is filled with $\frac{6}{4}$ liter milk and second is filled with $\frac{2}{3}$ liter milk. Find the difference in both.

Milk in first pot = $\frac{6}{4}$
 Milk in second pot = $\frac{2}{3}$
 Difference = $\frac{6}{4} - \frac{2}{3}$
 = $\frac{18-8}{12}$
 Liters = $\frac{5}{6}$

EXERCISE 3.9

1 The weight of a soap is $3\frac{7}{5}$ kilogram and the weight of other is $1\frac{1}{8}$ kilogram. Find the sum of both soaps.

Sol: Weight of a soap = $3\frac{7}{5}$
 Weight of other soap = $1\frac{1}{8}$

Sum of both soap	= ?	2 5, 8
= $3\frac{7}{5}$ + $1\frac{1}{8}$	= $\frac{22}{5} + \frac{9}{8}$	2 5, 4
= $\frac{176+45}{40}$	= $\frac{176+45}{40}$	2 5, 2
= $\frac{221}{40}$	= $\frac{221}{40}$	5 5, 1
= $5\frac{21}{40}$	= $5\frac{21}{40}$	1, 1

$2 \times 2 \times 2 \times 5 = 40$

$40 \overline{)221}$
 -200
 21

2 Nadia bought a ribbon of $3\frac{1}{4}$ meters, she gave her sister $1\frac{3}{8}$ metres of ribbon. How many meters of ribbon she aed.

Sol: Nadia bought ribbon = $3\frac{1}{4}$
 Her sister gave ribbon = $1\frac{3}{8}$
 Total ribbon she had = ?

= $3\frac{1}{4} + 1\frac{3}{8}$	2 4, 8
= $\frac{13}{4} + \frac{11}{8}$	2 2, 4
= $\frac{(13 \times 2) + (11 \times 1)}{8}$	2 1, 2
= $\frac{26+11}{8}$	1, 1
= $\frac{37}{8}$	$2 \times 2 \times 2 = 8$
= $4\frac{5}{8}$	8 37 -32 5

3) A labour fetched $\frac{4}{6}$ litre of water on first day, $\frac{1}{3}$ litre on second day, and $1\frac{2}{4}$ litre on third day. Tell that how much total water did he fetched.

Sol: First day labour fetched water = $\frac{4}{6}$ liter

Second day labour fetched water = $\frac{1}{3}$ liter

Third day labour fetched water = $1\frac{2}{4}$ liter

Total water = ?

$$= \frac{4}{6} + \frac{1}{3} + 1\frac{2}{4}$$

$$= \frac{4}{6} + \frac{1}{3} + \frac{6}{4}$$

$$= \frac{(4 \times 2) + (1 \times 4) + (6 \times 3)}{12}$$

$$= \frac{8 + 4 + 18}{12}$$

$$= \frac{15}{12} = \frac{5}{4}$$

$$= \frac{5}{2} = 2\frac{1}{2}$$

$$2 \mid 6, 3, 4$$

$$2 \mid 3, 3, 2$$

$$3 \mid 3, 3, 1$$

$$1, 1, 1$$

$$2 \times 2 \times 3 = 12$$

$$2 \sqrt[2]{\frac{5}{4}}$$

4) There is $3\frac{3}{4}$ liters of petrol in a shop the shopkeeper sold $\frac{3}{5}$ litre of petrol. How much petrol did the shopkeeper have?

Sol: Petrol in a shop = $3\frac{3}{4}$

Petrol sold = $\frac{3}{5}$

Remaining petrol = ?

$$= 3\frac{3}{4} + \frac{3}{5}$$

$$= \frac{15}{4} + \frac{3}{5}$$

$$= \frac{(15 \times 5) + (3 \times 4)}{20}$$

$$= \frac{87}{20}$$

$$= 4\frac{7}{25}$$

$$2 \mid 4, 5$$

$$2 \mid 2, 5$$

$$5 \mid 1, 5$$

$$1, 1$$

$$2 \times 2 \times 5 = 20$$

$$20 \sqrt[4]{\frac{87}{80}}$$

5) The multiplication of two fraction is $5\frac{1}{4}$. If one is $\frac{2}{5}$ then find the other fraction.

Sol: Multiplication of two fraction = $5\frac{1}{4}$

One fraction = $\frac{2}{5}$

Other fraction = ?

$$= 5\frac{1}{4} + \frac{2}{5}$$

$$= \frac{21}{4} + \frac{2}{5}$$

$$= \frac{(21 \times 5) + (2 \times 4)}{20}$$

$$= \frac{105 + 8}{20}$$

$$= \frac{113}{20}$$

$$= 5\frac{13}{20}$$

$$2 \times 2 \times 5 = 20$$

$$5$$

$$20 \sqrt[5]{113}$$

$$-100$$

$$13$$

6) Danish bought 8 kilogram of sugar, he placed in 6 jars equal, find the weight of sugar in each jar.

Sol: Weight of sugar = 8

Total jars of sugar = 6

Weight of sugar in each jar = ?

$$= \frac{48}{6}$$

$$= \frac{4}{3}$$

$$= 1.33$$

Ans: The weight of sugar in each jar = 1.33 kilogram.

NUMBER OF DECIMAL FRACTION

The numbers which are on right side of decimal of any number is called decimal numbers.

AS i 10.23 Here, two numbers are on right side of decimal.
 ii 14.317 Here, Three numbers are on right side of decimal.
 iii 15.0075 Here four numbers are on right side of decimal.

THE NUMBER PLACE IN DECIMAL FRACTION:

In decimal fraction, from right to left side of increasing of number becomes ten time greater while left to right side going to number, value decrease for ten time.

Hundred	Tens	Unit	Tenth	Hundredth	Thousandth	Number place
100	10	1	$\frac{1}{10} = 0.1$	$\frac{1}{100} = 0.01$	$\frac{1}{1000} = 0.001$	

Example 1: Find the number place of 735.189

Hundred	Tens	Unit	Decimal	Tenth	Hundredth	Thousandth
7	3	5	.	1	8	9

Number place of = 700

Number place of = 5

Number place of = 0.08

Number place of = 30

Number place of = 0.1

Number place of = 0.009

Example: 2 Find the number place of 788.254

Hundred	Tens	Unit	Decimal	Tenth	Hundredth	Thousandth
7	8	8	.	2	5	4

Number place of = 700

Number place of = 80

Number place of = 8

Number place of = 0.2

Number place of = 0.05

Number place of = 0.004

TO CONVERT THE COMMON FRACTION INTO DECIMAL FRACTION:

Example (1) convert the $\frac{6}{10}$ into decimal fraction.

$$\text{Solution: } \frac{6}{10} = 0.6$$

Example (2) Convert the $\frac{35}{100}$ into decimal fraction.

$$\text{Solution: } \frac{35}{100} = 0.35$$

TO CONVERT THE DECIMAL FRACTION INTO COMMON FRACTION:

Example (1)

Convert 51.2 in Common fraction.

$$\text{Solution } \frac{512}{10} = 51.2$$

Example (3)

Convert 315.452 Into common fraction

$$\text{Solution } = 315.452 = \frac{315452}{1000}$$

Example (2)

Convert 4.35 in common fraction.

$$\text{Solution } = 4.35 = \frac{435}{100}$$

Example (4)

convert 3.17 into common fraction

$$\text{Solution } 3.17 = \frac{317}{100}$$

IMPORTANT INFORMATION

- The number that is obtained by removing of decimal in decimal fraction is called nomenator.
- The number that is obtained by placing of zeros on the place of decimal number is called denominator.

EXERCISE 4.1

i Find the place value of following number.

1 115 . 121

Sol: = 115 . 121

1 = 100 , 1 = 0 . 1

1 = 10 , 2 = 0 . 02

5 = 5 , 1 = 0 . 001

2 787 . 245

Sol: = 787 . 245

7 = 700 , 2 = 0 . 2

8 = 80 , 4 = 0 . 04

7 = 5 , 7 = 0 . 005

3 918 . 056

Sol: = 918 . 056

9 = 900 , 0 = 0 . 0

1 = 80 , 5 = 0 . 05

7 = 7 , 6 = 0 . 006

4 479 . 215

Sol: = 479 . 215

4 = 400 , 2 = 0 . 2

7 = 90 , 1 = 0 . 01

9 = 9 , 5 = 0 . 005

5 815.076

Sol: = 815.076

$$8 = 800, 0 = 0.0$$

$$1 = 10, 7 = 0.07$$

$$5 = 5, 6 = 0.006$$

6 105.437

Sol: = 105.437

$$1 = 100, 4 = 0.4$$

$$0 = 00, 3 = 0.00$$

$$5 = 5, 5 = 0.007$$

7 152.052

Sol: = 152.052

$$1 = 100, 0 = 0.0$$

$$5 = 50, 7 = 0.05$$

$$2 = 2, 6 = 0.002$$

8 24.152

Sol: = 24.152

$$2 = 20, 1 = 0.1$$

$$4 = 4, 5 = 0.05$$

$$0 = 0, 2 = 0.002$$

ii Convert into common fractions.

1 1.752

$$\text{Sol: } \frac{1752}{1000}$$

2 315.07

$$\text{Sol: } \frac{31507}{100}$$

3 592.4152

$$\text{Sol: } \frac{5924152}{10000}$$

4 715.235

$$\text{Sol: } \frac{715235}{1000}$$

5 45.002

$$\text{Sol: } \frac{45002}{1000}$$

6 398.347

$$\text{Sol: } \frac{398347}{1000}$$

7 315.415

$$\text{Sol: } \frac{315415}{1000}$$

8 219.195

$$\text{Sol: } \frac{219195}{1000}$$

iii Convert the common fraction into decimal fractions.

1 $\frac{159}{100}$

$$\text{Sol: } \begin{array}{r} 1.59 \\ 100 \overline{)159} \\ -100 \\ \hline 590 \\ -500 \\ \hline 900 \\ -900 \\ \hline 000 \end{array}$$

Ans: 1.59

2 $\frac{7}{10}$

$$\text{Sol: } \begin{array}{r} 0.7 \\ 10 \overline{)70} \\ -70 \\ \hline 00 \end{array}$$

Ans: 0.7

3 $\frac{215}{1000}$

$$\text{Sol: } \begin{array}{r} 0.215 \\ 1000 \overline{)2150} \\ -2000 \\ \hline 1500 \\ -1000 \\ \hline 5000 \\ -5000 \\ \hline 0000 \end{array}$$

Ans: 0.215

4 $\frac{1989}{100}$

$$\text{Sol: } \begin{array}{r} 19.89 \\ 100 \overline{)1989} \\ -100 \\ \hline 989 \\ -900 \\ \hline 890 \\ -800 \\ \hline 900 \\ -900 \\ \hline 000 \end{array}$$

Ans: 19.89

5 $\frac{45}{1000}$

$$\text{Sol: } \begin{array}{r} 0.045 \\ 1000 \overline{)4500} \\ -4000 \\ \hline 5000 \\ -5000 \\ \hline 0000 \end{array}$$

Ans: 0.045

6 $\frac{2}{10}$

$$\text{Sol: } \begin{array}{r} 0.2 \\ 10 \overline{)20} \\ -20 \\ \hline 00 \end{array}$$

Ans: 0.2

ADDITION OF DECIMAL FRACTION

In addition, decimal is place under the decimal then digits are added by addition rules.

Example:

$$\begin{array}{r} 41.35 \\ + 3.075 \\ \hline 44.425 \end{array}$$

Solution:

Example:

$$\begin{array}{r} 45.452 \\ + 31.512 \\ \hline 76.964 \end{array}$$

Solution:

SUBTRACTION OF DECIMAL FRACTION

In subtraction of decimal, we set the number as number place values and decimal is placed under the decimal is placed under the decimal then process of subtracter is started.

Example (1) Solve 49.865-30.277

Example:

$$\begin{array}{r} 49.865 \\ - 30.277 \\ \hline 19.588 \end{array}$$

Example:

$$\begin{array}{r} 19.315 \\ - 7.451 \\ \hline 11.864 \end{array}$$

Example:

$$\begin{array}{r} 19.315 \\ - 7.451 \\ \hline 11.864 \end{array}$$

EXERCISE 4.2

i Add the following.

1 $0.345 + 4.895$

$$\begin{array}{r} 0.345 \\ + 4.895 \\ \hline 5.240 \end{array}$$

2 $31.767 + 42.792$

$$\begin{array}{r} 31.767 \\ + 42.792 \\ \hline 74.559 \end{array}$$

3 $898.12 + 13.450$

$$\begin{array}{r} 898.12 \\ + 13.450 \\ \hline 911.462 \end{array}$$

4 $561.373 + 47.629$

$$\begin{array}{r} 561.373 \\ + 47.629 \\ \hline 609.002 \end{array}$$

5 $921.326 + 67.521$

$$\begin{array}{r} 921.326 \\ + 67.521 \\ \hline 988.847 \end{array}$$

6 $28.12 + 6.397$

$$\begin{array}{r} 28.12 \\ + 6.397 \\ \hline 34.517 \end{array}$$

7 $433.032 + 973.129$

$$\begin{array}{r} 433.032 \\ + 973.129 \\ \hline 1406.161 \end{array}$$

8 $3.24 + 642.12$

$$\begin{array}{r} 642.12 \\ + 3.24 \\ \hline 645.36 \end{array}$$

9 $429.972 + 4.593$

$$\begin{array}{r} 429.972 \\ + 4.593 \\ \hline 434.565 \end{array}$$

10 $42.73 + 82.14$

$$\begin{array}{r} 42.73 \\ + 82.14 \\ \hline 124.87 \end{array}$$

11 $0.315 + 4.752$

$$\begin{array}{r} 0.315 \\ + 4.752 \\ \hline 5.067 \end{array}$$

12 $4.152 + 1.249$

$$\begin{array}{r} 4.152 \\ + 1.249 \\ \hline 5.401 \end{array}$$

ii Subtract the following.

1 $737.42 - 439.432$

$$\begin{array}{r} 737.420 \\ - 439.432 \\ \hline 297.988 \end{array}$$

2 $4.5 - 0.004$

$$\begin{array}{r} 4.500 \\ - 0.004 \\ \hline 4.496 \end{array}$$

3 $910.66 - 349.2$

$$\begin{array}{r} 910.66 \\ - 349.20 \\ \hline 561.46 \end{array}$$

4 $99.793 - 66.679$

$$\begin{array}{r} 99.793 \\ - 66.679 \\ \hline 33.117 \end{array}$$

5 $464.12 - 293.699$

Sol:
$$\begin{array}{r} 464.120 \\ -293.699 \\ \hline 170.421 \end{array}$$

7 $67.24 - 25.68$

Sol:
$$\begin{array}{r} 67.24 \\ -25.68 \\ \hline 41.56 \end{array}$$

9 $5.9 - 0.04$

Sol:
$$\begin{array}{r} 5.9 \\ -0.04 \\ \hline 4.86 \end{array}$$

11 $.488 - 0.371$

Sol:
$$\begin{array}{r} 0.488 \\ -0.371 \\ \hline 0.117 \end{array}$$

6 $59.398 - 55.291$

Sol:
$$\begin{array}{r} 59.398 \\ -55.291 \\ \hline 4.107 \end{array}$$

8 $87.25 - 76.01$

Sol:
$$\begin{array}{r} 87.25 \\ -76.01 \\ \hline 11.24 \end{array}$$

10 $463.5 - 293.782$

Sol:
$$\begin{array}{r} 463.500 \\ -293.782 \\ \hline 169.718 \end{array}$$

12 $7.452 - 0.572$

Sol:
$$\begin{array}{r} 7.452 \\ -0.572 \\ \hline 6.880 \end{array}$$

MULTIPLICATION OF DECIMAL FRACTION

The multiplication of decimal fraction is obtained as the multiplication of natural numbers. But Numbers from the right side of decimal are counted and decimal of multiplication is placed in the sum of digits in answer.

IMPORTANT INFORMATION

Decimal of multiplication is placed in the same digits of given numbers from right side of digits

Example 2: Multiply 7 with 2.932.

$$\begin{array}{r} 2.932 \\ \times 7 \\ \hline 6.424 \end{array}$$

Example 1: Multiply 5 with 5.452

$$\begin{array}{r} 5.452 \\ \times 5 \\ \hline 27.260 \end{array}$$

EXERCISE 3.6

Solve the following

1 24.452×7

Sol:
$$\begin{array}{r} 24.452 \\ \times 7 \\ \hline 171.164 \end{array}$$

2 15.025×6

Sol:
$$\begin{array}{r} 15.025 \\ \times 6 \\ \hline 90.15 \end{array}$$

3 1.375×9

Sol:
$$\begin{array}{r} 1.375 \\ \times 9 \\ \hline 12.375 \end{array}$$

4 2.340×2

Sol:
$$\begin{array}{r} 2.340 \\ \times 2 \\ \hline 4.680 \end{array}$$

5 3.254×5

Sol:
$$\begin{array}{r} 3.254 \\ \times 5 \\ \hline 16.270 \end{array}$$

6 70.06×8

Sol:
$$\begin{array}{r} 70.06 \\ \times 8 \\ \hline 56.48 \end{array}$$

7 7.03×4

Sol:
$$\begin{array}{r} 7.03 \\ \times 4 \\ \hline 28.12 \end{array}$$

8 542.30×7

Sol:
$$\begin{array}{r} 542.30 \\ \times 7 \\ \hline 3796.10 \end{array}$$

9 0.979×3

Sol:
$$\begin{array}{r} 0.979 \\ \times 3 \\ \hline 2.937 \end{array}$$

10 83.45×8

Sol:
$$\begin{array}{r} 83.45 \\ \times 8 \\ \hline 66.760 \end{array}$$

11 192.25×8

Sol:
$$\begin{array}{r} 192.25 \\ \times 8 \\ \hline 156.800 \end{array}$$

12 71.25×2

Sol:
$$\begin{array}{r} 71.25 \\ \times 2 \\ \hline 141.50 \end{array}$$

13 84.42×6

Sol:
$$\begin{array}{r} 84.42 \\ \times 6 \\ \hline 586.52 \end{array}$$

14 19.25×8

Sol:
$$\begin{array}{r} 19.25 \\ \times 8 \\ \hline 154.00 \end{array}$$

15 70.07×4

Sol:
$$\begin{array}{r} 70.07 \\ \times 4 \\ \hline 280.28 \end{array}$$

DIVISION OF DECIMAL FRACTION

The function of division in decimal fraction is obtained as the natural Number system.

IMPORTANT INFORMATION

In division of decimal fraction, decimal is placed after the division of decimal digits.

Example 1

Divide 931,278 by 6

$$\begin{array}{r} 155.213 \\ 6 \overline{)931.278} \\ \underline{-36} \\ 33 \\ \underline{-30} \\ 31 \\ \underline{-30} \\ 12 \\ \underline{-12} \\ 0 \\ 7 \\ \underline{-6} \\ 18 \\ \underline{-18} \\ 0 \end{array}$$

then $931.278 \div 6 = 155.213$

Example 2

Divide 432.8 by 4

$$\begin{array}{r} 108.2 \\ 4 \overline{)432.8} \\ \underline{-4} \\ 32 \\ \underline{-32} \\ .8 \\ \underline{-8} \\ 0 \end{array}$$

then $432.8 \div 2 = 108.2$

EXERCISE 4.4

Solve:

1 $176.60 \div 5$

$$\begin{array}{r} 35.32 \\ 5 \overline{)176.60} \\ \underline{-15} \\ 26 \\ \underline{-25} \\ 16 \\ \underline{-15} \\ 10 \\ \underline{-10} \\ 0 \end{array}$$

Ans: 35.32

2 $2481.9 \div 3$

$$\begin{array}{r} 8.273 \\ 3 \overline{)2481.9} \\ \underline{-24} \\ 008 \\ \underline{-6} \\ 21 \\ \underline{-21} \\ 009 \\ \underline{-9} \\ 0 \end{array}$$

Ans: 8.273

3 $963.45 \div 9$

$$\begin{array}{r} 107.05 \\ 9 \overline{)963.45} \\ -90 \\ \hline 63 \\ -63 \\ \hline 45 \\ -45 \\ \hline 00 \end{array}$$

Ans: 17.5

4 $2567.8 \div 2$

$$\begin{array}{r} 1283.9 \\ 2 \overline{)2567.8} \\ -2 \\ \hline 5 \\ -4 \\ \hline 16 \\ -16 \\ \hline 7 \\ -6 \\ \hline 18 \\ -18 \\ \hline 00 \end{array}$$

Ans: 1283.9

5 $878.4 \div 8$

$$\begin{array}{r} 109.8 \\ 8 \overline{)878.4} \\ -80 \\ \hline 78 \\ -72 \\ \hline 64 \\ -64 \\ \hline 00 \end{array}$$

Ans: 109.8

6 $24.48 \div 8$

$$\begin{array}{r} 3.06 \\ 8 \overline{)24.48} \\ -24 \\ \hline 48 \\ -48 \\ \hline 00 \end{array}$$

Ans: 3.06

7 $912.36 \div 6$

$$\begin{array}{r} 152.06 \\ 6 \overline{)912.36} \\ -6 \\ \hline 31 \\ -30 \\ \hline 12 \\ -12 \\ \hline 0036 \\ -36 \\ \hline 00 \end{array}$$

Ans: 152.06

8 $4.722 \div 3$

$$\begin{array}{r} 1.574 \\ 3 \overline{)4.722} \\ -3 \\ \hline 17 \\ -15 \\ \hline 22 \\ -21 \\ \hline 12 \\ -12 \\ \hline 00 \end{array}$$

Ans: 1.574

9 $0.0072 \div 8$

$$\begin{array}{r} 0.0009 \\ 8 \overline{)0.0072} \\ -0.0072 \\ \hline 00000 \end{array}$$

Ans: 0.0009

11 $4.44 \div 2$

$$\begin{array}{r} 2.22 \\ 2 \overline{)4.44} \\ -4 \\ \hline 4 \\ -4 \\ \hline 0 \end{array}$$

Ans: 2.22

13 $72.24 \div 3$

$$\begin{array}{r} 24.08 \\ 3 \overline{)72.24} \\ -6 \\ \hline 12 \\ -12 \\ \hline 24 \\ -24 \\ \hline 00 \end{array}$$

Ans: 24.08

15 $910.8 \div 3$

$$\begin{array}{r} 303.6 \\ 3 \overline{)910.8} \\ -90 \\ \hline 10 \\ -9 \\ \hline 18 \\ -18 \\ \hline 00 \end{array}$$

Ans: 303.6

10 $18927.81 \div 9$

$$\begin{array}{r} 2103.09 \\ 9 \overline{)18927.81} \\ -18 \\ \hline 92 \\ -81 \\ \hline 27 \\ -27 \\ \hline 81 \\ -81 \\ \hline 00 \end{array}$$

Ans: 2103.09

12 $81.90 \div 9$

$$\begin{array}{r} 9.10 \\ 9 \overline{)81.90} \\ -81 \\ \hline 90 \\ -90 \\ \hline 00 \end{array}$$

Ans: 9.10

$$\begin{array}{r} 3.05 \\ 5 \overline{)15.25} \\ -15 \\ \hline 25 \\ -25 \\ \hline 00 \end{array}$$

Ans: 3.05

NUMERICALS ON DECIMAL FRACTION:**Example:** Ali bought a book of Rs. 15.75 and open of Rs 12.95.

How many rupees he had spent?

Solution: Cost of book Rs: 15.75 = 15 . 75

$$\begin{array}{r} \text{Cost of Pen} \quad \text{Rs: } 12.95 \quad = \quad + 12 . 70 \\ \hline \end{array}$$

$$\begin{array}{r} \text{Total Cost} \quad \text{Rs: } 28.70 \quad = \quad 28 . 70 \\ \hline \end{array}$$

Example: Alia made 8 suits from 48.8 meter of cloth.**Solution:** Cost of book Rs: 48.8 = 6.1

$$\begin{array}{r} \text{Cost of Pen} \quad \text{Rs: } 8 \quad = \quad 8 \sqrt{48.8} \\ \hline \end{array}$$

$$\begin{array}{r} \text{Per Suits} \quad \text{Rs: } 48.8 \div 8 \quad = \quad 8 \\ \hline \end{array}$$

$$\begin{array}{r} \text{Total Cost} \quad \text{Rs: } 6.1 \quad = \quad 0 \\ \hline \end{array}$$

Example: The cost of a kilogram of rice is 182.95 rupees.

Find the cost of 5 kilogram of rice.

Solution: Cost of a kilogram 182.95

$$\begin{array}{r} \text{Cost of a 5 kilogram} \quad 182.95 \times 5 \\ \hline \end{array}$$

$$\begin{array}{r} \text{Total cost} \quad 914.75 \\ \hline \end{array}$$

EXERCISE 3.6

1 Khalid bought a book of Rs 35.75, a pencil of Rs 18.12 and four pens are of Rs = 39.67. How much rupees did he spent?

Sol: Price of a book = Rs: 35.75

Price of a pencil = Rs: 18.12

Price of pens = Rs: 39.67

Total rupees = Rs: 93.54

Ans: Khalid had spent = Rs: 93.54

2 Nadia, bought a book of Rs 89.75, she gave a note of 100 to shopkeeper. How many rupees shopkeeper returned to her?

Sol: Nadia bought a book = Rs: 89.75
She gave to the shopkeeper = Rs: 100
Remaining amount = ?

$$\begin{array}{r} 100.00 \\ - 89.75 \\ \hline 10.25 \end{array}$$

Ans: Remaining amount = 10.25

3 What number should added in 4.582 to get 5.

$$\begin{array}{r} 5.000 \\ - 4.582 \\ \hline 0.418 \end{array}$$

4 The cost of dozen of banana is Rs 96.65. What will be the cost of 6 dozen of banana?

Sol: The cost of dozen banana = Rs: 96.65
We know that 1 dozen = Rs: 12
Since the cost of 1 banana = Rs: 8.054166
Total rupees = Rs: 93.54

$$\begin{array}{r} 8.054166 \\ 12 \sqrt{96.65} \\ - 96 \\ \hline 65 \\ - 60 \\ \hline 50 \\ - 48 \\ \hline 20 \\ - 12 \\ \hline 80 \\ - 72 \\ \hline 80 \\ - 72 \\ \hline 8 \end{array} \quad \begin{array}{r} 8.054166 \\ \times 6 \\ \hline 48.324996 \end{array}$$

So, the cost of 6 banana is = Rs: 48.324996

5) The price of 8 oranges is Rs 75.64. What will be the price of an orange?

Sol: The price of 6 oranges = Rs: 75.64
The price of an orange = Rs: ?

$$\begin{array}{r}
 9.455 \\
 12 \overline{)75.64} \\
 -72 \\
 \hline
 36 \\
 -32 \\
 \hline
 44 \\
 -40 \\
 \hline
 40 \\
 -40 \\
 \hline
 00
 \end{array}$$

Ans: The price of an orange is 9.455

6) Length of a rope is 41.5. It is distributed in two parts. If the length of one part is 27.6 then what will be the length of second part?

Sol: Length of a rope = Rs: 41.5
Length of one side = Rs: 27.6
Length of other side = ?

$$\begin{array}{r}
 41.5 \\
 -27.6 \\
 \hline
 13.9
 \end{array}$$

Ans: The length of second part of a rope is 13.9.

7) Weight of a book is 11.95 grams and weight of other book is 9.27 grams. Tell which book is heavier and how much weight is more?

Sol: Weight of one book = Rs: 11.95 gram.
Weight of another book = Rs: 9.27 grams.
Difference of these books = ?

$$\begin{array}{r}
 11.95 \\
 -9.27 \\
 \hline
 2.68
 \end{array}$$

Ans: Book one is 2.68 grams heavier than other book.

8) The cost of five hens is 1225.25 rupees. What will be the price of a hen?

Sol: The cost of five hens = Rs: 1225.25 rupees.
The cost of a hen = Rs: ?

$$\begin{array}{r}
 245.05 \\
 5 \overline{)1225.25} \\
 -10 \\
 \hline
 22 \\
 -20 \\
 \hline
 25 \\
 -25 \\
 \hline
 00
 \end{array}$$

Ans: The cost of a hen is Rs: = 245.05

9) A wooden block is 52.30 m long and other is 48.372 m long. How many meters first wooden long is?

Sol: Length of one block is = Rs: 52.30 m
Length of other block is = Rs: 48.372 m
Difference of both block is = ?

$$\begin{array}{r}
 52.300 \text{ m} \\
 -48.372 \text{ m} \\
 \hline
 3.928 \text{ m}
 \end{array}$$

Ans: First wooden block is 3.928 m longer than other wooden block.

10) Umar had 180.75 rupees. He bought 5 books from these. Find the price of a book.

Sol: The cost of five books = Rs: 180.75
The cost of a book = Rs: ?

$$\begin{array}{r}
 36.15 \\
 5 \overline{)180.75} \\
 -15 \\
 \hline
 37 \\
 -30 \\
 \hline
 7 \\
 -5 \\
 \hline
 25 \\
 -25 \\
 \hline
 00
 \end{array}$$

Ans: The cost of a book = Rs: 36.15

ii) A women bought a ring of Rs:10.35, bangles of Rs:50.25 and ear rings of Rs.121.32. How many rupees did she paid to the gold smith?

Sol: The price of a ring = Rs: 170.35
 The price of bangles = Rs: 50.25
 The price of ear rings = Rs: 121.32
Total price = Rs: 341.92

Ans: She paid Rs: 341.92 rupees to the gold smith.

12) The cost of a pencil is Rs 10.75, What price will be of 8 pencils?

Sol: The cost of a pencil is = Rs: 41.5
 The cost of 8 pencils = ?

$$\begin{array}{r} 10.75 \\ \times 8 \\ \hline 86.00 \end{array}$$

Ans: The cost of 8 pencil is 86.00.

MEASUREMENT

The unit of length or distance in decimal system is “meter” and the biggest Unit of length is “kilometer”

UNITS OF LENGTH

$$\begin{array}{rcl} 1 \text{ kilometer} & = & 1000 \text{ meter} \\ 1 \text{ meter} & = & 10 \text{ decimeter} \end{array} \quad \begin{array}{rcl} 1 \text{ meter} & = & 100 \text{ centimeter} \\ 1 \text{ centi meter} & = & 10 \text{ millimeter} \end{array}$$

IMPORTANT INFORMATION

- The time of conversion of small units into big units, the small units are divided by big units.
- At the time of conversion of big units into small units, the big units are multiplied by small units.

Example (1) convert the 4 kilo meter into meters.

$$\begin{array}{rcl} 1 & = & 1000 \\ 4 & = & 4 \times 1000 = 4000 \end{array}$$

Example 2: Convert the 16 cm and 6 multi meter into milli meter.

$$\begin{array}{rcl} 1 & = & 10 \\ 16 \times 10 & = & 16 \\ 160 & = & \\ 160 + 8 & = & 16 \quad 8 \\ 168 & = & \end{array}$$

ADDITION OF UNITS OF LENGTH

The addition of decimal fraction is obtained as the rule of natural numbers addition. Meters are added with meter, centimeter with centimeter and kilo meter with kilo meter.

Example: Add, 15 kilometer, 30 meters and 95 Centi meter with 16 km, 16 m and 67 cm.

$$\begin{array}{r} \text{Kilo meter} \quad \text{meters} \quad \text{centi meter} \\ 15 \quad 30 \quad 95 \\ + 16 \quad 16 \quad 67 \\ \hline 31 \quad 47 \quad 62 \end{array}$$

Example 2 Add: 631 km, 68 m, 4 with 480 km, 72 m.

$$\begin{array}{r} \text{Kilo meter} \quad \text{meter} \\ 631 \quad 68 \\ + 480 \quad 72 \\ \hline 1112 \quad 40 \end{array}$$

EXERCISE 5.1

i Convert the kilometer into meter.

1 1455 km

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1455 \\ \times 1000 \\ \hline 1455000 \end{array}$$

Then: 1455×1000
= 1455000 m Ans:

$$\begin{array}{r} 1455 \\ \times 1000 \\ \hline 1455000 \end{array}$$

2 135 km

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1000 \\ \times 135 \\ \hline 135000 \end{array}$$

Then: 135×1000
= 135000 m Ans:

$$\begin{array}{r} 135 \\ \times 1000 \\ \hline 135000 \end{array}$$

3 479 km and 15 m

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1000 \\ \times 479 \\ \hline 479000 \end{array}$$

Then: 479×1000
= 479000 m Ans:

$$\begin{array}{r} 479 \\ \times 1000 \\ \hline 479000 \end{array}$$

Now add the 479000 m and 15 m

$$\begin{array}{r} 479000 \\ + 15 \\ \hline 479015 \end{array}$$

4 315 km and 20 m

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1000 \\ \times 315 \\ \hline 1000 \\ 5000x \\ +3000xx \\ \hline 315000 \end{array}$$

Then: 315×1000
= 315000 m Ans:

Now add the 315000 m and 20 m

$$\begin{array}{r} 315000 \\ + 20 \\ \hline 315020 \end{array}$$

5 415 km and 30 m

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1000 \\ \times 415 \\ \hline 5000 \\ 1000x \\ +4000xx \\ \hline 415000 \end{array}$$

Then: 415×1000
= 415000 m Ans:

Now add the 415000 m and 30 m

$$\begin{array}{r} 415000 \\ + 30 \\ \hline 415030 \end{array}$$

6 29 km and 71 m

R.W

Sol: We know that:
1 km = 1000 m.

$$\begin{array}{r} 1000 \\ \times 29 \\ \hline 9000 \\ 2000x \\ \hline 29000 \end{array}$$

Then: 29×1000
= 29000 m Ans:

Now add the 29000 m and 71 m

$$\begin{array}{r} 29000 \\ + 71 \\ \hline 29071 \end{array}$$

ii Convert the centi meters into meters.

1 491 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 471 by 100.

$$\begin{array}{r}
 47.1 \\
 100 \overline{)471} \\
 -400 \\
 \hline
 710 \\
 -700 \\
 \hline
 100 \\
 -100 \\
 \hline
 000
 \end{array}$$

Ans: 491 cm = 47.1 m

2 810 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 810 by 100.

$$\begin{array}{r}
 8.1 \\
 100 \overline{)810} \\
 -800 \\
 \hline
 100 \\
 -100 \\
 \hline
 000
 \end{array}$$

Ans: 810 cm = 8.1 m.

3 555 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 555 by 100.

$$\begin{array}{r}
 5.55 \\
 100 \overline{)555} \\
 -500 \\
 \hline
 550 \\
 -500 \\
 \hline
 500 \\
 -500 \\
 \hline
 000
 \end{array}$$

Ans: 555 cm = 5.55 m.

4 171 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 171 by 100.

$$\begin{array}{r}
 1.71 \\
 100 \overline{)171} \\
 -100 \\
 \hline
 710 \\
 -700 \\
 \hline
 100 \\
 -100 \\
 \hline
 000
 \end{array}$$

Ans: 171 cm = 1.71 m

5 900 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 900 by 100.

$$\begin{array}{r}
 9 \\
 100 \overline{)900} \\
 -900 \\
 \hline
 000
 \end{array}$$

Ans: 900 cm = 9 m

6 771 cm

Sol: We know that 1 km = 100 cm.
Then, divide the 771 by 100.

$$\begin{array}{r}
 7.71 \\
 100 \overline{)771} \\
 -700 \\
 \hline
 710 \\
 -700 \\
 \hline
 100 \\
 -100 \\
 \hline
 000
 \end{array}$$

Ans: 771 cm = 7.71 m

iii Convert into millimeters.

1 7 cm and 6 mm

Sol: We know that 1 km = 10 mm.
Then, multiply 7 by 10.

$$= 7 \times 10 \\ = 70 \text{ mm}$$

Now add 10 mm and 6mm

$$\begin{array}{r} 70 \text{ mm} \\ + 6\text{mm} \\ \hline 76 \text{ mm} \end{array}$$

Ans: 7 cm and 66 mm = 76 mm

R.W

$$\begin{array}{r} 10 \\ \times 7 \\ \hline 70 \end{array}$$

3 8 cm and 2 mm

Sol: We know that 1 km = 10 mm.
Then, multiply 8 by 10.

$$= 8 \times 10 \\ = 80 \text{ mm}$$

Now add 80 mm and 2mm

R.W

$$\begin{array}{r} 10 \\ \times 8 \\ \hline 80 \end{array}$$

$$\begin{array}{r} 80 \text{ mm} \\ + 2 \text{ mm} \\ \hline 82 \text{ mm} \end{array}$$

Ans: 8 cm and 2 mm = 82 mm

4 15 cm and 3 mm

Sol: We know that 1 km = 10 mm.
Then, multiply 15 by 10.

$$= 15 \times 10 \\ = 150 \text{ mm}$$

Now add 150 mm and 3 mm

R.W

$$\begin{array}{r} 15 \\ \times 10 \\ \hline 00 \\ +15x \\ \hline 150 \end{array}$$

$$\begin{array}{r} 150 \text{ mm} \\ + 3 \text{ mm} \\ \hline 153 \text{ mm} \end{array}$$

Ans: 15cm and 3 mm = 153mm

2 10 cm and 7 mm

Sol: We know that 1 km = 10 mm.
Then, multiply 10 by 10.

$$= 10 \times 10 \\ = 100 \text{ mm}$$

Now add 100 mm and 7mm

$$\begin{array}{r} 100 \text{ mm} \\ + 7\text{mm} \\ \hline 107 \text{ mm} \end{array}$$

Ans: 10 cm and 7 mm = 107 mm

8 29 km and 95 m with 159 km and 72 m.

$$\begin{array}{r} \text{Sol:} \quad 29 \text{ km : } 95 \text{ m} \\ \quad +159 \text{ km : } 72 \text{ m} \\ \hline \quad 188 \text{ km : } 167 \text{ m} \end{array}$$

Subtraction of units of length:

The subtraction of decimal number of length is obtained as the subtractory natural number. Kilometers are subtracted from kilometer, meters from meters and centi meters from centimeter.

Example: (1) Subtract 9 km and 11m from 12 km and 13 m.

$$\begin{array}{r} \text{Kilometer} \text{ — meter} \\ \begin{array}{r} 12 \text{ — } 13 \\ - 9 \text{ — } 11 \\ \hline 3 \text{ — } 02 \end{array} \text{ then } 3 \text{ km and } 2 \text{ m.} \end{array}$$

Example 2: Subtract 632 km and 40 m to

$$\begin{array}{r} \text{Solution km} \text{ — meter} \\ \begin{array}{r} 632 \text{ — } 40 \\ - 321 \text{ — } 95 \\ \hline 310 \text{ — } 45 \end{array} \end{array}$$

EXERCISE 5.2

Subtract:

1 61 m and 4 dm from 70 m 2 7 km and 45 m from 9 km and 50 m.

$$\begin{array}{r} \text{Sol:} \quad 70 \text{ m : } 15 \text{ dm} \\ \quad -61 \text{ m : } 4 \text{ dm} \\ \hline \quad 9 \text{ m : } 11 \text{ dm} \end{array}$$

$$\begin{array}{r} \text{Sol:} \quad 9 \text{ km : } 50 \text{ m} \\ \quad -7 \text{ km : } 45 \text{ m} \\ \hline \quad 2 \text{ km : } 5 \text{ m} \end{array}$$

3 7 m and 3 cm to 3 m and 7 cm.

$$\begin{array}{r} \text{Sol:} \quad 7 \text{ m : } 3 \text{ cm} \\ \quad -3 \text{ m : } 7 \text{ cm} \\ \hline \quad 3 \text{ m : } 96 \text{ cm} \\ \quad (: 1 \text{ m} = 100 \text{ cm}) \end{array}$$

4 29 km and 78 m from 37 km and 92 m.

$$\begin{array}{r} \text{Sol:} \quad 37 \text{ km : } 92 \text{ m} \\ \quad -29 \text{ km : } 78 \text{ m} \\ \hline \quad 6 \text{ km : } 14 \text{ m} \end{array}$$

5 28 km and 4 m from 35 km and 5 m.

$$\begin{array}{r} \text{Sol:} \quad 35 \text{ km : } 5 \text{ cm} \\ \quad 28 \text{ km : } 4 \text{ cm} \\ \hline \quad 07 \text{ km : } 1 \text{ cm} \end{array}$$

6 6 cm and 9 mm from 8 cm and 10 mm.

$$\begin{array}{r} \text{Sol:} \quad 8 \text{ cm : } 10 \text{ mm} \\ \quad -26 \text{ cm : } 9 \text{ mm} \\ \hline \quad 2 \text{ cm : } 1 \text{ mm} \end{array}$$

7 302 cm and 19 mm from 424 cm and 28 mm.

$$\begin{array}{r} \text{Sol:} \quad 424 \text{ cm : } 28 \text{ cm} \\ \quad -302 \text{ cm : } 19 \text{ cm} \\ \hline \quad 122 \text{ cm : } 9 \text{ cm} \end{array}$$

8 4m, 6 dm, and 3 cm from 8m, 4dm and 5 cm.

$$\begin{array}{r} \text{Sol:} \quad 8 \text{ m : } 4 \text{ dm : } 5 \text{ cm} \\ \quad -4 \text{ m : } 6 \text{ dm : } 3 \text{ cm} \\ \hline \quad 3 \text{ m : } 8 \text{ dm : } 2 \text{ cm} \end{array}$$

9 238 km and 68 m from 615 km and 98 m.

$$\begin{array}{r} \text{Sol:} \quad 615 \text{ km : } 98 \text{ cm} \\ \quad -238 \text{ km : } 68 \text{ cm} \\ \hline \quad 377 \text{ km : } 30 \text{ cm} \end{array}$$

10 199 km and 3m from 380 km and 33 m.

$$\begin{array}{r} \text{Sol:} \quad 380 \text{ km : } 33 \text{ m} \\ \quad -199 \text{ km : } 35 \text{ m} \\ \hline \quad 180 \text{ km : } 998 \text{ m} \end{array}$$

11 370 km and 29 m from 380 km and 93 m.

$$\begin{array}{r} \text{Sol:} \quad 380 \text{ km : } 93 \text{ cm} \\ \quad -370 \text{ km : } 29 \text{ cm} \\ \hline \quad 10 \text{ km : } 64 \text{ cm} \end{array}$$

12 950 km and 73m to 250 km and 18m.

$$\begin{array}{r} \text{Sol:} \quad 950 \text{ km : } 73 \text{ m} \\ \quad -250 \text{ km : } 18 \text{ m} \\ \hline \quad 700 \text{ km : } 55 \text{ m} \end{array}$$

13 875 km and 71 m to 670 km and 51 m.

$$\begin{array}{r} \text{Sol:} \quad 875 \text{ km : } 71 \text{ mm} \\ \quad -570 \text{ km : } 51 \text{ mm} \\ \hline \quad 305 \text{ km : } 20 \text{ mm} \end{array}$$

14 655 km and 65 m to 110 km and 9m.

$$\begin{array}{r} \text{Sol:} \quad 655 \text{ km : } 65 \text{ m} \\ \quad -110 \text{ km : } 9 \text{ m} \\ \hline \quad 545 \text{ km : } 56 \text{ m} \end{array}$$

Measurement of mass

The unit of mass of object is kilo gram, Gram is smaller unit of mass and kilogram is biggest unit of mass.

Addition of units of mass.

At the time of addition, kilogram is added with kilogram while gram is added with grams.

Example (1) Add 125 kg and 75 gram with 72 kg and 84 gram.

Kilograms ____ grams

$$\begin{array}{r} 125 \\ + 905 \\ \hline 1031 \end{array}$$

____ 04

Then 1020 kg and 104 gram.

Example - Add 36 kg and 87 gram with 72 kg and 84 gram.

Kilograms ____ grams

$$\begin{array}{r} 36 \\ + 72 \\ \hline 109 \end{array}$$

____ 71

EXERCISE 5.3

Add the following:

1 37 kg and 44 grams with 24 kg and 15 grams.

$$\begin{array}{r} \text{Sol: } 38 \text{ kg : } 44 \text{ grams} \\ + 24 \text{ kg : } 15 \text{ grams} \\ \hline 62 \text{ kg : } 59 \text{ grams} \end{array}$$

2 217 kg and 39 gram with 105 kg and 810 grams.

$$\begin{array}{r} \text{Sol: } 217 \text{ kg : } 39 \text{ grams} \\ + 105 \text{ kg : } 810 \text{ grams} \\ \hline 322 \text{ kg : } 810 \text{ grams} \end{array}$$

3 535 kg and 10 grams with 84 kg and 12 grams.

$$\begin{array}{r} \text{Sol: } 535 \text{ kg : } 10 \text{ gm} \\ + 84 \text{ kg : } 12 \text{ gm} \\ \hline 619 \text{ kg : } 25 \text{ gm} \end{array}$$

4 16 kg and 700 grams with 23 kg and 810 grams.

$$\begin{array}{r} \text{Sol: } 16 \text{ kg : } 700 \text{ grams} \\ + 23 \text{ kg : } 810 \text{ grams} \\ \hline 40 \text{ kg : } 510 \text{ grams} \end{array}$$

5 15 kg and 75 grams with 22 kg and 219 grams.

$$\begin{array}{r} \text{Sol: } 15 \text{ kg : } 75 \text{ grams} \\ + 22 \text{ kg : } 219 \text{ grams} \\ \hline 37 \text{ kg : } 294 \text{ grams} \end{array}$$

7 36 kg and 740 grams with 92 kg and 900 grams.

$$\begin{array}{r} \text{Sol: } 36 \text{ kg : } 740 \text{ grams} \\ + 92 \text{ kg : } 900 \text{ grams} \\ \hline 129 \text{ kg : } 640 \text{ grams} \end{array}$$

9 370 kg and 29 grams with 511 kg and 35 grams.

$$\begin{array}{r} \text{Sol: } 370 \text{ kg : } 29 \text{ grams} \\ + 511 \text{ kg : } 35 \text{ grams} \\ \hline 881 \text{ kg : } 64 \text{ grams} \end{array}$$

11 429 kg and 31 grams with 609 kg and 15 grams.

$$\begin{array}{r} \text{Sol: } 429 \text{ kg : } 31 \text{ grams} \\ + 609 \text{ kg : } 15 \text{ grams} \\ \hline 1030 \text{ kg : } 46 \text{ grams} \end{array}$$

13 517 kg and 75 grams with 219 kg and 10 grams.

$$\begin{array}{r} \text{Sol: } 517 \text{ kg : } 75 \text{ grams} \\ + 219 \text{ kg : } 10 \text{ grams} \\ \hline 438 \text{ kg : } 85 \text{ grams} \end{array}$$

14 95 kg and 52 grams with 19 kg and 25 grams.

$$\begin{array}{r} \text{Sol: } 95 \text{ kg : } 52 \text{ grams} \\ + 19 \text{ kg : } 25 \text{ grams} \\ \hline 114 \text{ kg : } 77 \text{ grams} \end{array}$$

Subtraction of units of mass.

The subtraction of units of mass is obtained as subtraction of natural number, kilogram is subtracted from kilogram and grams are subtracted from grams.

Example:

$$\begin{array}{r}
 \text{Kilograms} \quad \text{grams} \\
 875 \quad 81 \\
 -537 \quad 35 \\
 \hline
 338 \quad 48
 \end{array}$$

Example(2) 316 kg and 23 grams from 437 kg and 44 grams.

$$\begin{array}{r}
 \text{Kilograms} \quad \text{grams} \\
 437 \quad 44 \\
 -316 \quad 23 \\
 \hline
 121 \quad 21
 \end{array}
 \text{ Then } 121 \text{ kg and } 21 \text{ grams.}$$

EXERCISE 5.4

Perform the subtraction.

1 55 kg and 83 grams to 37 kg and 88 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 55 \text{ kg : } 83 \text{ grams} \\
 -37 \text{ kg : } 88 \text{ grams} \\
 \hline
 17 \text{ kg : } 995 \text{ grams}
 \end{array}$$

2 53 kg and 31 grams to 45 kg and 29 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 53 \text{ kg : } 31 \text{ grams} \\
 -45 \text{ kg : } 29 \text{ grams} \\
 \hline
 8 \text{ kg : } 2 \text{ grams}
 \end{array}$$

3 361 kg and 15 grams to 209 kg and 15 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 361 \text{ kg : } 15 \text{ grams} \\
 -209 \text{ kg : } 14 \text{ grams} \\
 \hline
 17 \text{ kg : } 01 \text{ grams}
 \end{array}$$

4 17 kg and 33 grams to 16 kg and 22 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 17 \text{ kg : } 33 \text{ grams} \\
 -16 \text{ kg : } 22 \text{ grams} \\
 \hline
 1 \text{ kg : } 11 \text{ grams}
 \end{array}$$

5 16 kg and 45 grams to 13 kg and 75 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 16 \text{ kg : } 45 \text{ grams} \\
 -13 \text{ kg : } 75 \text{ grams} \\
 \hline
 2 \text{ kg : } 970 \text{ grams}
 \end{array}$$

6 29 kg and 37 gram from 45 kg and 63 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 45 \text{ kg : } 63 \text{ grams} \\
 -29 \text{ kg : } 37 \text{ grams} \\
 \hline
 16 \text{ kg : } 26 \text{ grams}
 \end{array}$$

7 29 kg and 613 grams from 35 kg and 287 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 35 \text{ kg : } 287 \text{ grams} \\
 -29 \text{ kg : } 613 \text{ grams} \\
 \hline
 5 \text{ kg : } 674 \text{ grams}
 \end{array}$$

8 69 kg and 495 grams from 87 kg and 900 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 87 \text{ kg : } 900 \text{ grams} \\
 -69 \text{ kg : } 495 \text{ grams} \\
 \hline
 18 \text{ kg : } 405 \text{ grams}
 \end{array}$$

9 729 kg and 21 gram from 972 kg and 41 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 972 \text{ kg : } 41 \text{ grams} \\
 -729 \text{ kg : } 21 \text{ grams} \\
 \hline
 243 \text{ kg : } 20 \text{ grams}
 \end{array}$$

10 29 kg and 800 grams from 85 kg and 715 grams.

$$\begin{array}{r}
 \text{Sol:} \quad 85 \text{ kg : } 715 \text{ grams} \\
 -29 \text{ kg : } 800 \text{ grams} \\
 \hline
 56 \text{ kg : } 915 \text{ grams}
 \end{array}$$

Addition of units of volume.

The units of volume is liter while its smaller unit is milli liter.

$$1 \text{ liter} = 1000 \text{ milli liter}$$

Addition of Units

An addition of units of volume. Liters are added with liters and milli liters are added with liters.

Example (1) Add: 15 liters and 415 ml with 45 l and 210 ml.

$$\begin{array}{r}
 \text{Liter} \quad \text{milli liter} \\
 15 \quad 415 \\
 + 45 \quad 210 \\
 \hline
 60 \quad 625
 \end{array}$$

Example (2) Add: 75 l and 60 ml with 51 and 307 ml.

$$\begin{array}{r}
 \text{Liter} \quad \text{milli liter} \\
 75 \quad 60 \\
 + 51 \quad 307 \\
 \hline
 126 \quad 867
 \end{array}$$

Subtraction of units of volume.

In subtraction of volume liter is subtracted of liter and milli liter are Subtracted from milli liter.

Example: Subtract 95 l and 875 ml from 117 l and 734 ml.

$$\text{L} \text{ — ml}$$

$$\begin{array}{r}
 117 \text{ — } 734 \\
 - 95 \text{ — } 875 \\
 \hline
 21 \text{ — } 859
 \end{array}$$

Example (2) 37 l and 588 ml from 76 l and 376 ml.

$$\text{L} \text{ — ml}$$

$$\begin{array}{r}
 76 \text{ — } 376 \\
 - 37 \text{ — } 588 \\
 \hline
 38 \text{ — } 788
 \end{array}$$

EXERCISE 5.5

Add the following.

1 35 l and 785 ml with 36 l and 400 ml.

$$\begin{array}{r}
 \text{Sol: } 35 \text{ L : } 785 \text{ ml} \\
 + 36 \text{ L : } 400 \text{ ml} \\
 \hline
 72 \text{ L : } 185 \text{ ml}
 \end{array}$$

2 11 l and 307 ml with 56 l and 60 ml.

$$\begin{array}{r}
 \text{Sol: } 11 \text{ L : } 307 \text{ ml} \\
 + 56 \text{ L : } 560 \text{ ml} \\
 \hline
 67 \text{ L : } 867 \text{ ml}
 \end{array}$$

3 95 l and 210 ml with 75 l and 559 ml

$$\begin{array}{r}
 \text{Sol: } 95 \text{ L : } 210 \text{ ml} \\
 + 75 \text{ L : } 559 \text{ ml} \\
 \hline
 170 \text{ L : } 769 \text{ ml}
 \end{array}$$

4 33 l and 221 ml with 37 l and 537 ml

$$\begin{array}{r}
 \text{Sol: } 33 \text{ L : } 221 \text{ ml} \\
 + 37 \text{ L : } 537 \text{ ml} \\
 \hline
 70 \text{ L : } 758 \text{ ml}
 \end{array}$$

5 51 l and 700 ml with 62 l and 677 ml

$$\begin{array}{r}
 \text{Sol: } 51 \text{ L : } 700 \text{ ml} \\
 + 62 \text{ L : } 677 \text{ ml} \\
 \hline
 11 \text{ L : } 377 \text{ ml}
 \end{array}$$

6 67 l and 751 ml with 29 l and 715 ml

$$\begin{array}{r}
 \text{Sol: } 67 \text{ L : } 675 \text{ ml} \\
 + 27 \text{ L : } 987 \text{ ml} \\
 \hline
 95 \text{ L : } 662 \text{ ml}
 \end{array}$$

7 19 l and 751 ml with 66 l and 890 ml

$$\begin{array}{r}
 \text{Sol: } 19 \text{ L : } 751 \text{ ml} \\
 + 29 \text{ L : } 715 \text{ ml} \\
 \hline
 49 \text{ L : } 466 \text{ ml}
 \end{array}$$

8 17 l and 677 ml with 66 l and 890 ml

$$\begin{array}{r}
 \text{Sol: } 17 \text{ L : } 677 \text{ ml} \\
 + 66 \text{ L : } 890 \text{ ml} \\
 \hline
 84 \text{ L : } 567 \text{ ml}
 \end{array}$$

Perform the subtraction.

1 2 l and 450 ml from 6 l and 325 ml

$$\begin{array}{r}
 \text{Sol: } 6 \text{ L : } 325 \text{ ml} \\
 - 2 \text{ L : } 450 \text{ ml} \\
 \hline
 3 \text{ L : } 875 \text{ ml}
 \end{array}$$

2 75 l and 35 ml from 86 l and 779 ml

$$\begin{array}{r}
 \text{Sol: } 86 \text{ L : } 779 \text{ ml} \\
 - 75 \text{ L : } 35 \text{ ml} \\
 \hline
 11 \text{ L : } 744 \text{ ml}
 \end{array}$$

3 89 l and 519 ml to 62 l and 779 ml

$$\begin{array}{r}
 \text{Sol: } 89 \text{ L : } 519 \text{ ml} \\
 - 62 \text{ L : } 779 \text{ ml} \\
 \hline
 27 \text{ L : } 740 \text{ ml}
 \end{array}$$

4 60 l and 200 ml to 40 l and 519 ml

$$\begin{array}{r}
 \text{Sol: } 60 \text{ L : } 200 \text{ ml} \\
 - 40 \text{ L : } 519 \text{ ml} \\
 \hline
 19 \text{ L : } 981 \text{ ml}
 \end{array}$$

5 14 l and 72 ml to 9 l and 820 ml

$$\begin{array}{r}
 \text{Sol: } 14 \text{ L : } 728 \text{ ml} \\
 - 9 \text{ L : } 820 \text{ ml} \\
 \hline
 4 \text{ L : } 908 \text{ ml}
 \end{array}$$

6 29 l and 642 ml to 14 l and 964 ml

$$\begin{array}{r}
 \text{Sol: } 25 \text{ L : } 642 \text{ ml} \\
 - 14 \text{ L : } 964 \text{ ml} \\
 \hline
 10 \text{ L : } 678 \text{ ml}
 \end{array}$$

7 3 l and 27 ml from 7 l and 25 ml

$$\begin{array}{r}
 \text{Sol: } 7 \text{ L : } 25 \text{ ml} \\
 - 3 \text{ L : } 27 \text{ ml} \\
 \hline
 3 \text{ L : } 998 \text{ ml}
 \end{array}$$

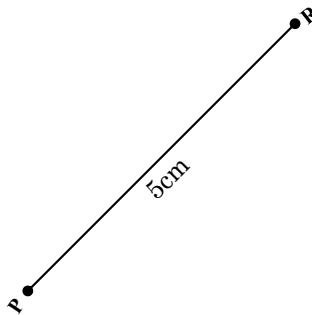
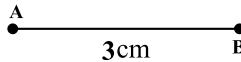
8 14 l and 415 ml from 41 l and 31 ml.

$$\begin{array}{r}
 \text{Sol: } 41 \text{ L : } 31 \text{ ml} \\
 - 14 \text{ L : } 415 \text{ ml} \\
 \hline
 26 \text{ L : } 616 \text{ ml}
 \end{array}$$

GEOMETRY:

Definitions:

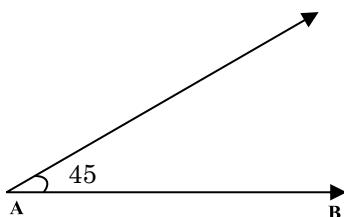
(1) Point:



Such shortest sign having no length and width is called point.

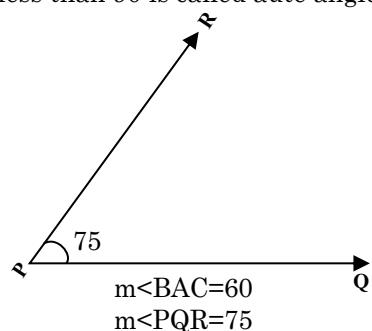
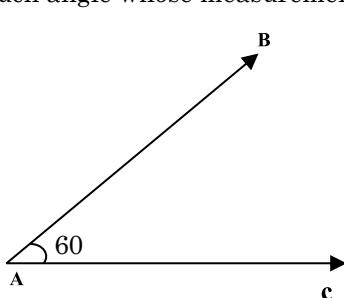
(2) Line Segment:

The group of points having no face but have two tail from both ends is called line segment.

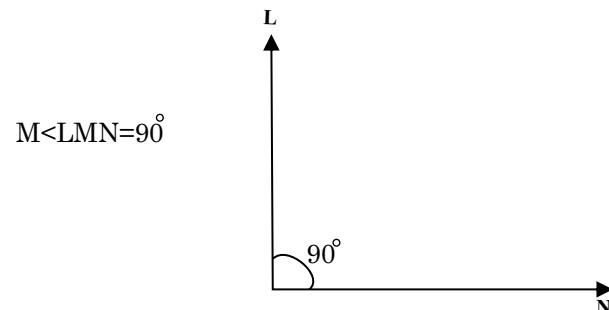
For example:


(I)

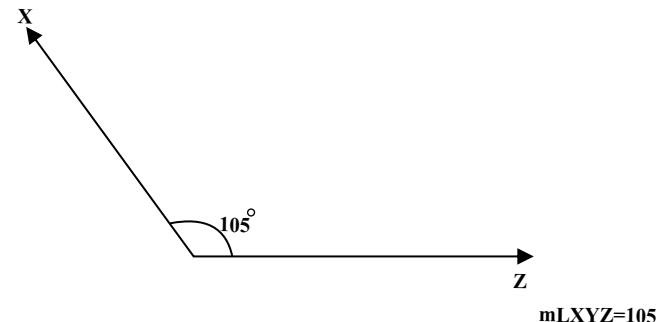
(3) Angle:



An angle is the union of two rays.

For example: $\angle ABC$:

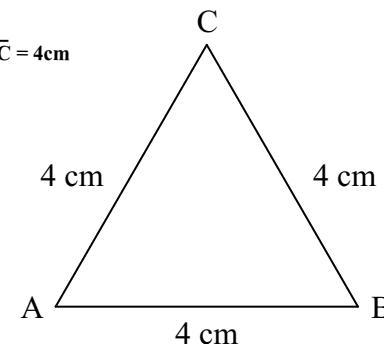

(4) Acute Angle:

Such angle whose measurement is less than 90° is called acute angle.


(5) Right angle:

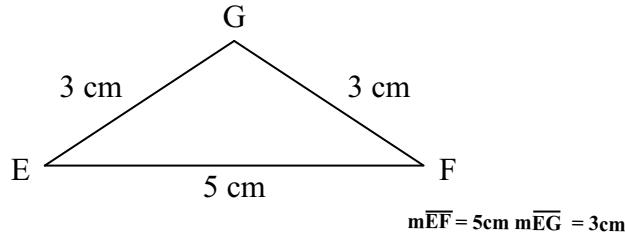
Such angle whose measurement is 90° is called right angle

(6) Obtuse angle:


Such angle whose measurement is greater than 90° and less than 180° is 90° is called obtuse angle

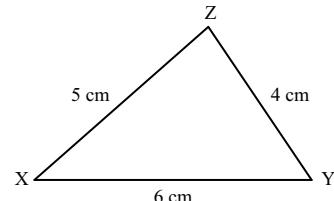
(6) Equilateral triangle or equal sides triangle:

Such triangle whose three sides are same in measurement, is called equilateral triangle or equal sides triangle. Here ABC is equilateral triangle.


$$m\overline{AB} = m\overline{BC} = m\overline{AC} = 4\text{cm}$$

(8) Isosceles Triangle:

Such triangle whose a pair of sides and a pair of angles is congruent is called Isosceles Triangle.


Here $\triangle EFG$ is isosceles triangle.

(9) Scalene triangle:

Such triangle where all sides are different in measurement and all angles are also different in measurement is called scalene triangle.

Here $\triangle XYZ$ is scalene triangle.

(10) Quadrilateral:

Any diagram having four sides is called quadrilateral. All angles of quadrilateral of 90° .

(11) Perimeter of Triangle:

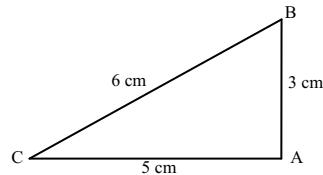
The total length of closed diagram is called perimeter.

(12) Perimeter of a Triangle:

The sum of three sides of a triangle is called perimeter of a triangle.

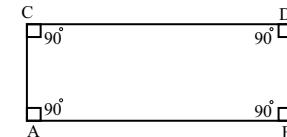
For example:

$$m\overline{AB} = 3\text{cm}$$

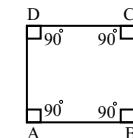

$$m\overline{BC} = 6\text{cm}$$

$$m\overline{AC} = 5\text{cm}$$

$$= m\overline{AB} + m\overline{BC} + m\overline{AC}$$


$$= 3 + 6 + 5$$

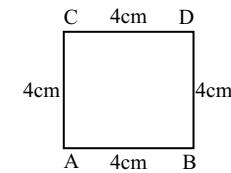
$$= 14\text{cm}$$


(13) Rectangle:

Such quadrilaterals whose pairs of opposite sides are congruent. Volume of each angle is 90° is called rectangle.

(14) Square:

Square is a quadrilateral whose all sides are congruent and all angles are right angle and is of 90° .


(15) Perimeter Square:

The length of four sides of a square is equal and the sum of all sides of square is called perimeter.

For example:

$$A = 4, B = 4, C = 4, D = 4$$

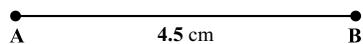
Then:

(16) Diameter:

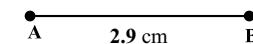
The line that passes in the center of a circle is called diameter.

(17) Radius:

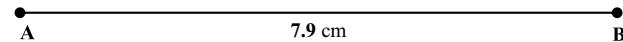
The half of the diameter is called radius.

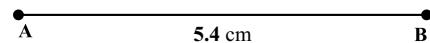

(18) Graph:

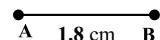
The information of any value or thing by line or diagram is called graph.

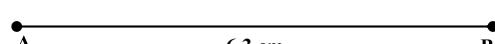

Activity: $\overline{AB} = 5 \text{ cm}$

Draw line segments of given length.


i 4.5 cm

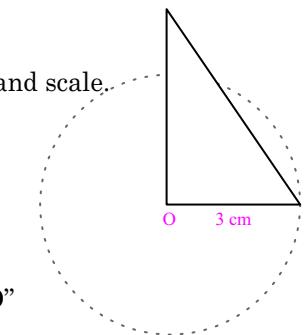

ii 2.9 cm


iii 7.9 cm


iv 5.4 cm

v 1.8 cm

vi 6.3 cm


Draw a circle of given radius:

Construct a circle whose radius is 3 centimeter.

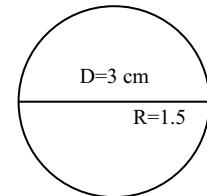
Constructor:

Required

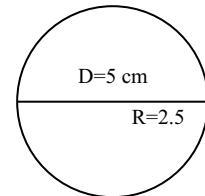
pencil, Sharpner, Rubber, Book, compass and scale.

Produce:

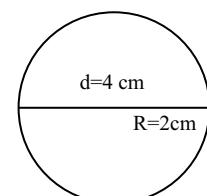
i Draw a point on paper.

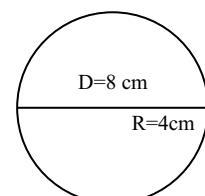

ii Open the compass about 3 cm.

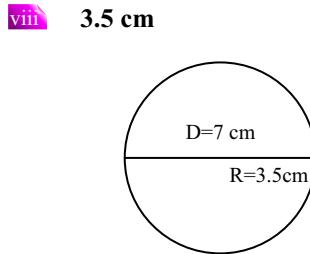
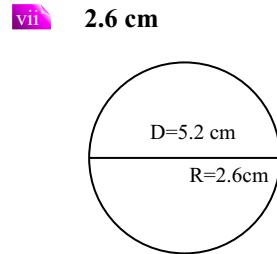
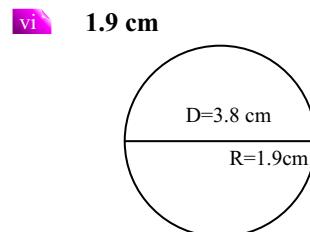
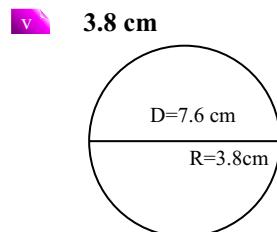
iii Draw a circle at the cache of "O"


iv It a required circle.

Activity: Draw circles of given radius.

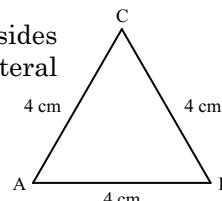

i 1.5 cm


ii 2.5 cm

iii 2 cm

iv 4 cm

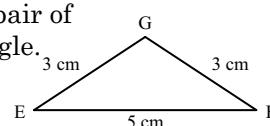

Kinds Triangle:

The kinds and example are under

Equilateral triangle such triangle whose three sides and three angles are congruent is called Equilateral triangle.

Here $\triangle ABC$ is equilateral.

$$m\overline{AB} = m\overline{BC} = m\overline{AC} = 4 \text{ cm}$$

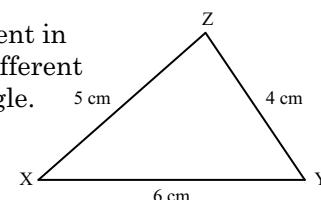


Isosceles Triangle

Such triangle whose a pair of sides and a pair of angles is congruent is called Isosceles triangle.

Here $\triangle EFG$ is isosceles triangle.

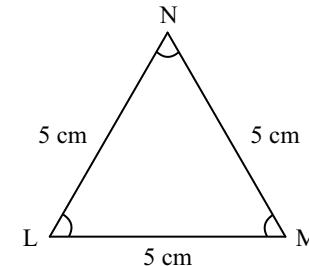
$$m\overline{EF} = 5 \text{ cm} \quad m\overline{EG} = m\overline{FG} = 3 \text{ cm}$$

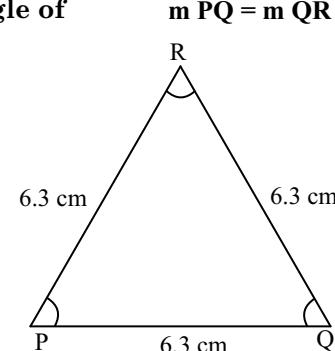


Scalene triangle

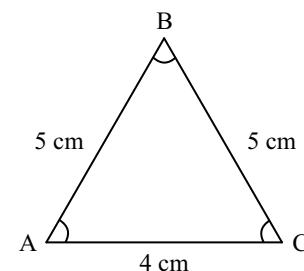
Such triangle where all sides are different in measurement and all angles are also different in measurement is called scalene triangle.

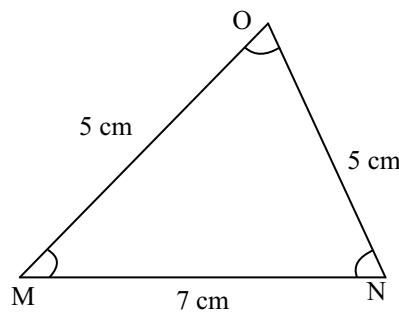
Here $\triangle XYZ$ is scalene triangle.

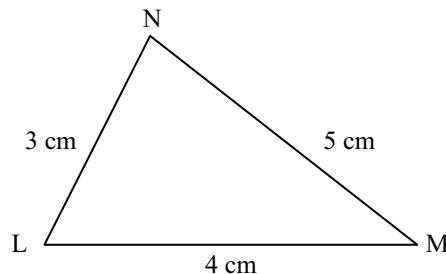

$$m\overline{XZ} = 5 \text{ cm} \quad m\overline{YZ} = 4 \text{ cm}, \quad m\overline{XY} = 6 \text{ cm}$$

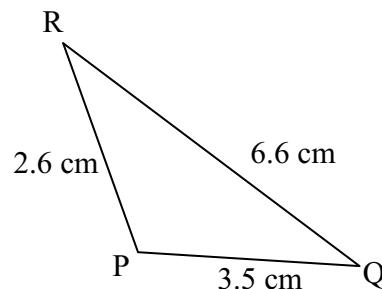

EXERCISE 6.1

Make triangles of the following measurements.


1 Draw triangle of $m\overline{LM} = m\overline{MN} = m\overline{LN} = 5 \text{ cm}$


2 Draw triangle of $m\overline{PQ} = m\overline{QR} = m\overline{PR} = 6.3 \text{ cm}$


3 Draw triangle of $m\overline{AB} = m\overline{BC} = 5 \text{ cm}, m\overline{AC} = 4 \text{ cm}$


4) Draw triangle of $m MN = 7 \text{ cm}$, $m MO = m NO = 5 \text{ cm}$

5) Draw triangle of LMN in which $m LM = 4 \text{ cm}$, $m MN = 5 \text{ cm}$, $m LN = 3 \text{ cm}$

6) Draw triangle of PQR in which $m PQ = 3.5 \text{ cm}$, $m PR = 2.6 \text{ cm}$, $m QR = 6.6 \text{ cm}$

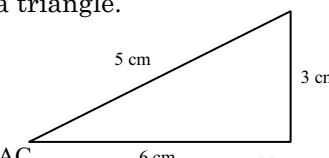
Perimeter of triangle:

The total length of closed diagram is called perimeter, the sum of three sides of a triangle is called perimeter of a triangle.

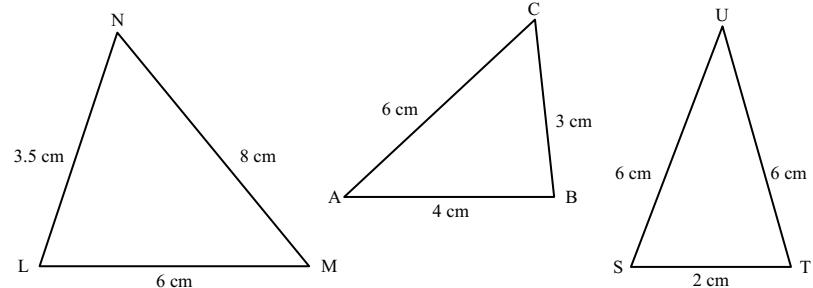
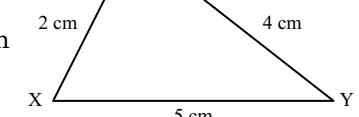
$$m PQ = 3.5 \text{ cm}, m PR = 2.6 \text{ cm}, m QR = 6.6 \text{ cm}$$

Activity: Find perimeter a triangle.

$$m AB = 3 \text{ cm}$$

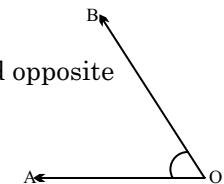

$$m BC = 6 \text{ cm}$$

$$m AC = 5 \text{ cm}$$



$$= m AB + m BC + m AC$$

$$= 3 + 6 = 5$$

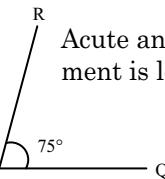
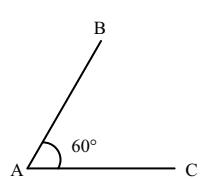
$$= 14 \text{ cm}$$



Activity: Find the perimeter of given triangles.

TO DRAW AN ANGLE:

An angle is for consisted of different and opposite lines here line OA and OB make an angle. OR Union of two ray is called angle.

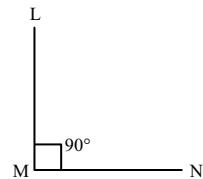



IMPORTANT INFORMATION

- 1) The golved ends show radius and open ends show degree of an angle.
- 2) The angle is denoted by $\angle AOB$ OR $\angle BOA$.
- 3) The radius name of an angle is placed between two lines.

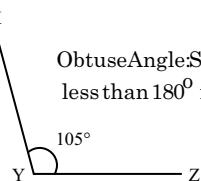
KINDS OF ANGLE

There are kinds of an angles.



Acute angle: Such angle whose measurement is less than 90° is called acute angle.

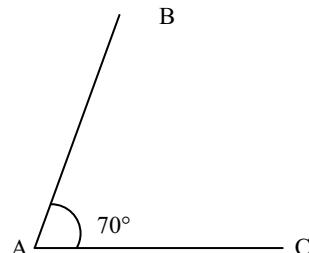
$$\begin{aligned} m\angle BAC &= 60^\circ \\ m\angle PQR &= 75^\circ \end{aligned}$$


Right angle: such angle whose measurement is 90° is called right angle.

$$m\angle LMN = 90^\circ$$

Obtuse Angle: Such angle whose measurement is greater than 90° and less than 180° is called obtuse angle.

$$m\angle XYZ = 105^\circ$$

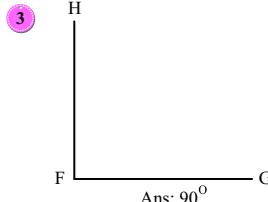
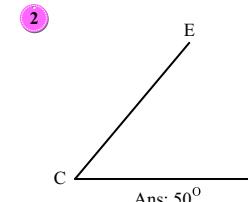
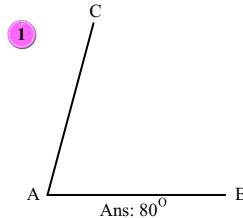

Measurement and construction of angles

The unit of angle is degree, we use protector to draw an angle, there are 180 degrees on protector.

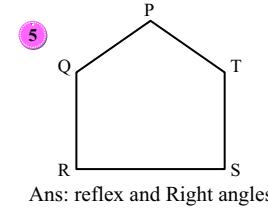
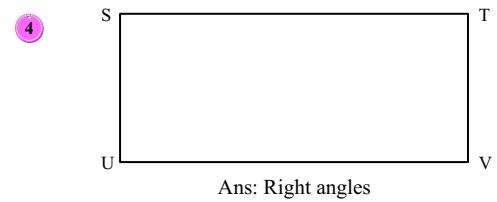
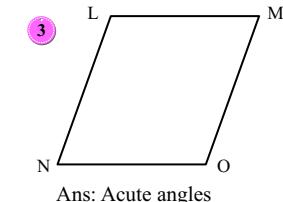
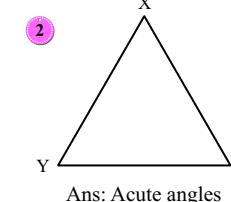
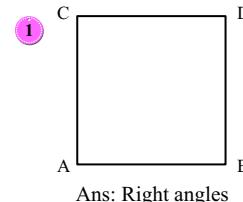
IMPORTANT INFORMATION

• "m" is used for measurement and "°" is used for degree.

Activity: Draw an angle of 70° with the help of protector.

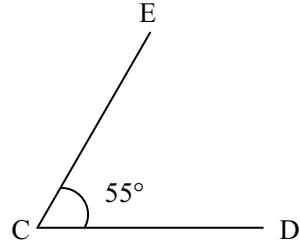
Construction:






- Draw a radius B in angle $\angle ABC$
- Place protector m one end of angle.
- Draw a point on given measurement of angle.
Here degree is 70° $m\angle ABC = 70^\circ$

EXERCISE 6.2

i Find the measurement given angle.

ii Find the measurement of angles in given diagram.



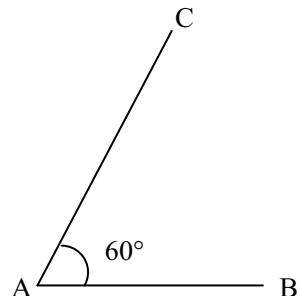
iii) Draw angles with the help of protector.

1) $m\angle CDE = 55^\circ$

Sol: Let $m\angle CDE = 55^\circ$

then,

Construction:


- (1) Draw a line CD of 3cm .
- (2) Draw a radius E in angle $\angle CDE$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.

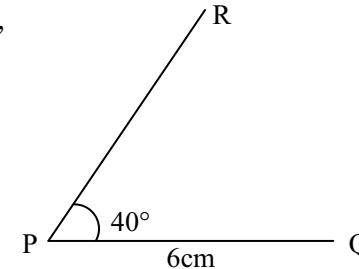
Here degree is 55° , $m\angle CDE = 55^\circ$.

2) $m\angle ABC = 60^\circ$

Sol: Let $m\angle ABC = 60^\circ$

then,

Construction:


- (1) Draw a line AB of 4cm .
- (2) Draw a radius C in angle $\angle ABC$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.

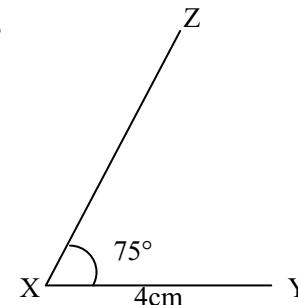
Here degree is 60° , $m\angle ABC = 60^\circ$.

3) $m\angle PQR = 40^\circ$

Sol: Let $m\angle PQR = 40^\circ$

then,

Construction:

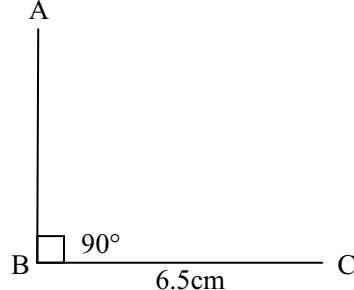

- (1) Draw a line PQ of 6cm .
- (2) Draw a radius R in angle $\angle PQR$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.

Here degree is 40° , $m\angle PQR = 40^\circ$.

4) $m\angle XYZ = 75^\circ$

Sol: Let $m\angle XYZ = 75^\circ$

then,

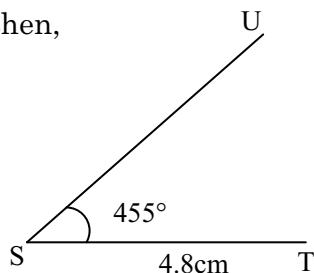

Construction:

- (1) Draw a line XY of 4cm .
- (2) Draw a radius Z in angle $\angle XYZ$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.

Here degree is 75° , $m\angle XYZ = 75^\circ$.

5) $m BC = 6.5 \text{ cm}$, $m \angle ABC = 90^\circ$

Sol: Let $m BC = 6.5 \text{ cm}$ and $m \angle ABC = 90^\circ$
then,



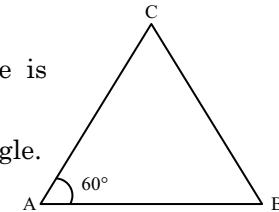
Construction:

- (1) Draw a line BC of 6.5 cm .
- (2) Draw a radius A in angle $\angle ABC$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.
Here degree is 90° , $m \angle ABC = 90^\circ$.

6) $m ST = 4.8 \text{ cm}$, $m \angle STU = 45^\circ$

Sol: Let $m ST = 4.8 \text{ cm}$ and $m \angle STU = 45^\circ$
then,

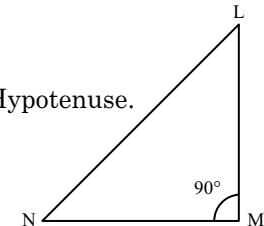
Construction:


- (1) Draw a line ST of 4.8 cm .
- (2) Draw a radius U in angle $\angle STU$.
- (3) Place protector m one and of angle.
- (4) Draw a point on given measurement of angle.
Here degree is 45° , $m \angle STU = 45^\circ$.

Kinds of triangle with respect of angles

i) Acute angled triangle:

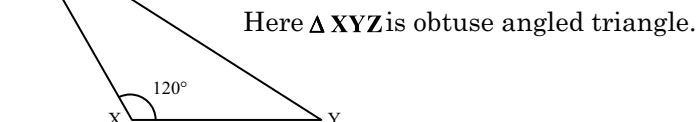
Such triangle where all angles are acute is called acute angle triangle.


Here $\triangle ABC$ $\angle ABC$ is acute angled triangle.

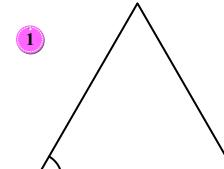
ii) Important information

The side between the $m \angle N$ and $m \angle L$ is called Hypotenuse. triangles. Here $\triangle LMN$ is right angled

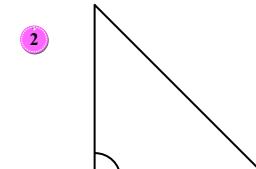
triangle $= 90^\circ = m \angle LM$

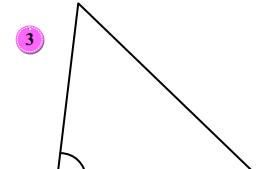


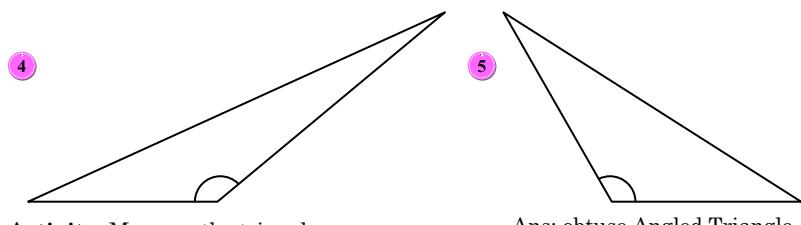
IMPORTANT INFORMATION

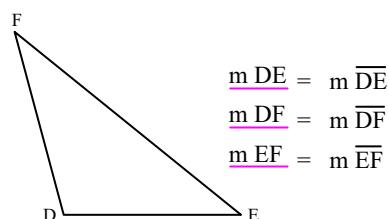
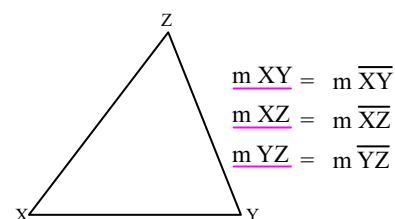
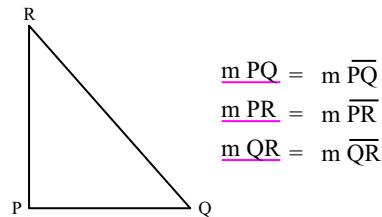
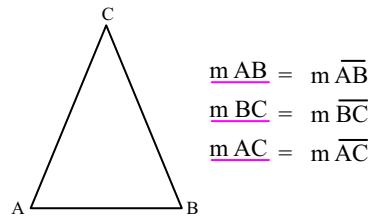

Side $\angle N$ is opposite of $\angle M$ is called Hypotenuse.

iii) Right angled triangle:

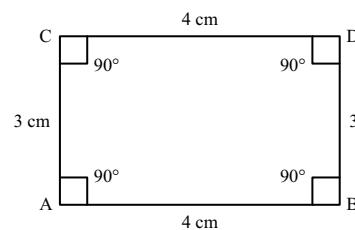

Such triangle whose only one angle is right or of 90° is called right angled Obtuse angled triangle: Such triangle whose only one angle is obtuse and other two are acute angle is called obtuse angled triangle.


Activity: Give the names in triangle with respect to angles.


Ans: Equilateral Triangle





Ans: Right angle

Ans: Acute Angled Triangle


Activity: Measure the triangles.

Construction of square and rectangle

Rectangle:

Such quadrilateral whose pairs of opposite sides are congruent and all angles are right angles is called rectangle.

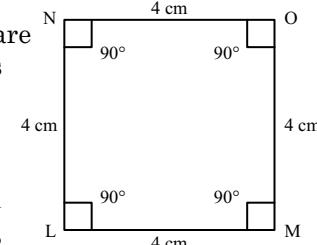
Example:

Draw ABCD where length = 4cm and width = 3cm.

$$mAB = mCD = 4 \text{ cm}$$

$$mAC = mBD = 3 \text{ cm}$$

$$\angle A = \angle B = \angle C = \angle D = 90^\circ$$


Square:

Square is a quadrilateral whose all side are congruent and all angles are right angle is called square.

Example: Draw square whose all sides = 4cm.

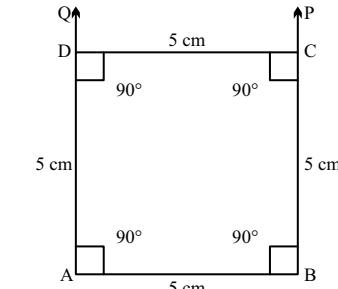
$$mMO = mLN = mNO = mL = 4 \text{ cm}$$

$$\angle L = \angle M = \angle N = \angle O = 90^\circ$$

Construction of square

Example: Draw a square whose sides are of 5cm length.

i Draw a line $mAB = 5 \text{ cm}$

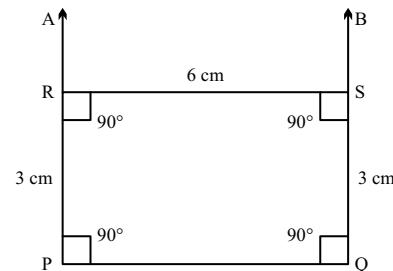

ii Draw an angle of 90° at A point.

iii Draw an angle of 90° on B point.

iv Draw an arc of 5 cm on C point.

v Joint point A and C with D.

Here $\square ABCD$ is square.


Construction of Rectangle

Example: Draw a rectangle whose length is 6cm and width is 3cm

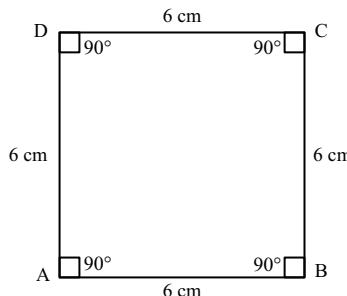
i Draw line segment of 6cm on mPQ and QS .

ii Draw an angle of 90° on P and also on Q.

iii Draw a line segment of 3cm mRS and PR

iv Joint point R with S

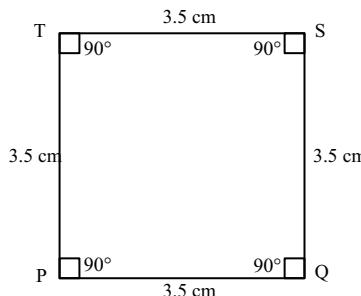
v He $\square PQRS$ is rectangle.


EXERCISE 6.3

1 Make the square of following measurements.

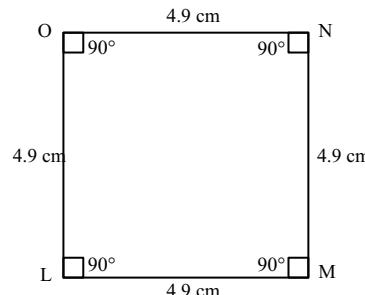
1 $m AB = 6 \text{ cm}$

Sol: * Draw a line $mAB = 6\text{cm}$.


- * Draw an angle of 90° on A point.
- * Draw an angle of 90° on B point.
- * Draw an arc of 6cm on C point.
- * Joint point A and C with D.
- * Hence: $\square ABCD$ is required square.

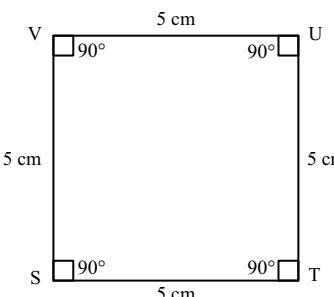
2 $m PQ = 3.5 \text{ cm}$

Sol: * Draw a line $mPQ = 3.5\text{cm}$.


- * Draw an angle of 90° on P point.
- * Draw an angle of 90° on Q point.
- * Draw an arc of 3.5cm on R point.
- * Joint P and R with S.
- * Hence: $\square PQRS$ is required square.

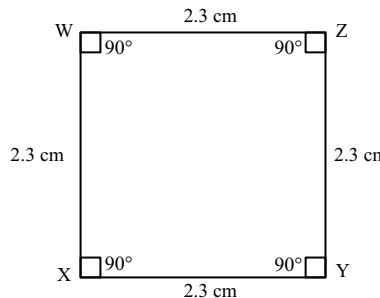
3 $m LM = 4.9 \text{ cm}$

Sol: * Draw a line $mLM = 4.9\text{cm}$.


- * Draw an angle of 90° on L point.
- * Draw an angle of 90° on M point.
- * Draw an arc of 4.9cm on N point.
- * Joint point L and N with OD.
- * Hence: $\square LMNO$ is required square.

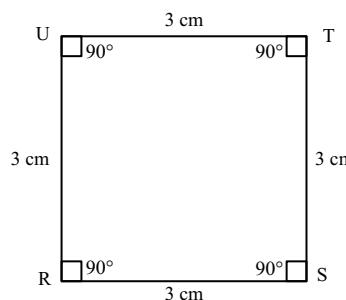
4 $m ST = 5 \text{ cm}$

Sol: * Draw a line $mST = 5\text{cm}$.


- * Draw an angle of 90° on S point.
- * Draw an angle of 90° on T point.
- * Draw an arc of 5cm on U point.
- * Joint S and U with V.
- * Hence: $\square STUV$ is required square.

5 $m XY = 2.3 \text{ cm}$

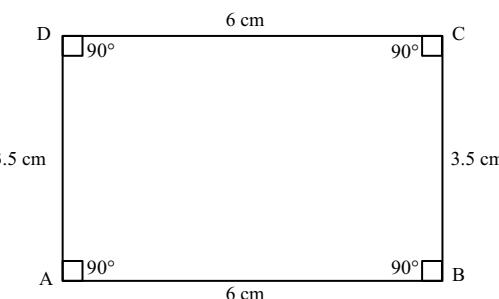
Sol: * Draw a line $mXY = 2.3 \text{ cm}$.


- * Draw an angle of 90° on X point.
- * Draw an angle of 90° on Y point.
- * Draw an arc of 2.3 cm on Z point.
- * Joint point X and Z with W.
- * Hence: $\square XYZW$ is required square.

6 $m RS = 3 \text{ cm}$

Sol: * Draw a line $mRS = 3 \text{ cm}$.

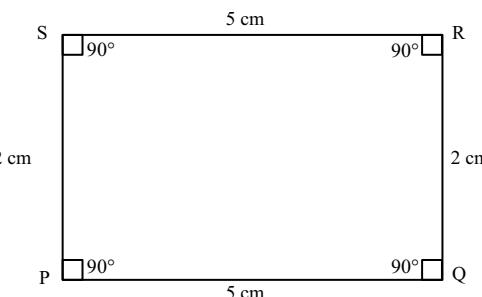
- * Draw an angle of 90° on R point.
- * Draw an angle of 90° on S point.
- * Draw an arc of 3 cm on T point.
- * Joint R and T with US.
- * Hence: $\square RSTU$ is required square.



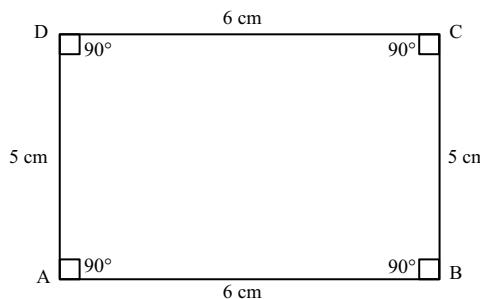
ii Construct rectangles of given measurement.

1 $l = 6 \text{ m}$ and $W = 3.5 \text{ cm}$

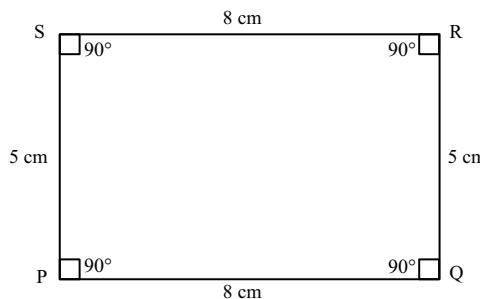
Sol: * Draw a line segment of 6 cm on A and B.


- * Draw an angle of 90° on A and also on B.
- * Draw a line segment of 3.5 cm on \overline{AC} and \overline{BC}
- * Joint point C with D.
- * Hence: $\square ABCD$ is required square.

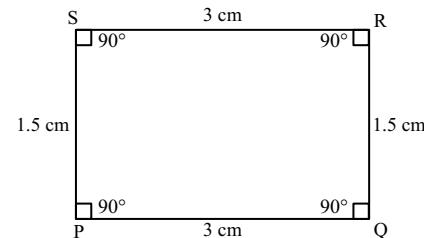
2 $l = 5 \text{ a } w = 2 \text{ m}$


Sol: * Draw a line segment of 2 cm on P and Q.

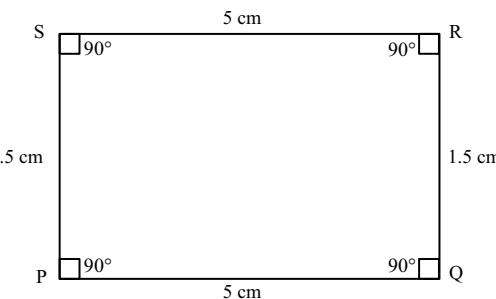
- * Draw an angle of 90° on P and also on Q.
- * Draw a line segment of 2 cm on \overline{QS} and \overline{PR}
- * Joint point R with S.
- * Hence: $\square PQRS$ is required square.


3 1 - 6m, w = 4.5 cm

Sol: * Draw a line segment of 6cm on P and Q.
 * Draw an angle of 90 on P and also on Q.
 * Draw a line segment of 4.5cm m \overline{QS} and m \overline{PQ}
 * Joint point R with S.
 * Hence: \square PQRS is required square.


4 1 = 8 cm and w = 5cm

Sol: * Draw a line segment of 8cm on P and Q.
 * Draw an angle of 90 on P and also on Q.
 * Draw a line segment of 5cm m \overline{QS} and m \overline{PR}
 * Joint point R with S.
 * Hence: \square PQRS is required square.


5 3cm w = 1.5m

Sol: * Draw a line segment of 3cm on P and Q.
 * Draw an angle of 90 on P and also on Q.
 * Draw a line segment of 1.5cm m \overline{QS} and m \overline{PQ}
 * Joint point R with S.
 * Hence: \square PQRS is required square.

6 1 = 5 cm w = 1.5 cm

Sol: * Draw a line segment of 5cm on P and Q.
 * Draw an angle of 90 on P and also on Q.
 * Draw a line segment of 1.5cm m \overline{QS} and m \overline{PR}
 * Joint point R with S.
 * Hence: \square PQRS is required square.

To find the perimeter of square and rectangle

Square:

The length of all sides of a square is equal so that the sum of all sides of square is called perimeter.

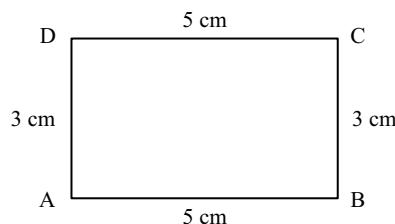
$$\text{Perimeter} = 4 \times \text{length}$$

Example: Find perimeter of $\square ABCD$ if length of side is 3cm.

Solution:

$$\begin{aligned}\text{Perimeter} &= 4 \times 3 \text{ Perimeter} \\ &= 12 \text{ cm} \\ &= 3 + 3 + 3 + 3 = 12 \text{ cm}\end{aligned}$$

Perimeter of Rectangle

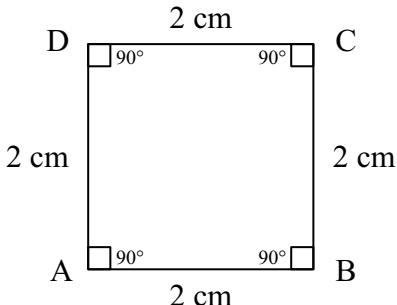

The long side of rectangle is called length and wide side of rectangle is called Perimeter of rectangle

$$= 2(\text{width} + \text{length})$$

Example: Find perimeter of rectangle if length = 5cm and width = 3cm.

Solution Perimeter = $(\text{length} + \text{width}) \times 2$

$$\begin{aligned}\text{Perimeter} &= (3 + 5) \times 2 \\ \text{Perimeter} &= 8 \times 2 = 16 \text{ cm} \\ &= 5 + 3 + 5 + 3 = 16 \text{ cm}\end{aligned}$$

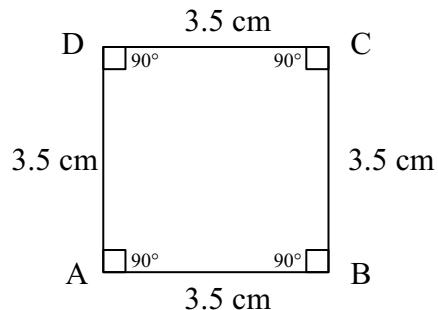


EXERCISE 6.4

1 Construct square and find perimeter.

1 2 cm

Sol: * Draw a line m AB = 2cm.
 * Draw an angle of 90° at A point.
 * Draw an angle of 90° at B point.
 * Draw an arc of 2cm on C point.
 * Joint point A and C with D.
 * Hence: $\square ABCD$ is required square.


Perimeter of square.

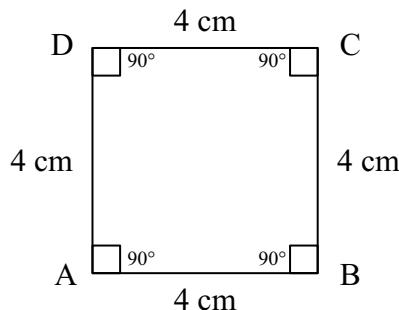
$$\begin{aligned}\text{Perimeter} &= 4 \times 2 \\ \text{Perimeter} &= 8 \text{ cm} \\ &= 2 + 2 + 2 + 2 = 8 \text{ cm}\end{aligned}$$

2 3.5 cm

Sol: * Draw a line m AB = 3.5cm.
 * Draw an angle of 90° at A point.
 * Draw an angle of 90° at B point.
 * Draw an arc of 3.5cm on C point.
 * Joint point A and C with D.
 * Hence: $\square ABCD$ is required square.

Perimeter of square.

$$\text{Perimeter} = 4 \times 3.5$$


$$\text{Perimeter} = 14 \text{ cm}$$

$$= 3.5 + 3.5 + 3.5 + 3.5 = 14 \text{ cm}$$

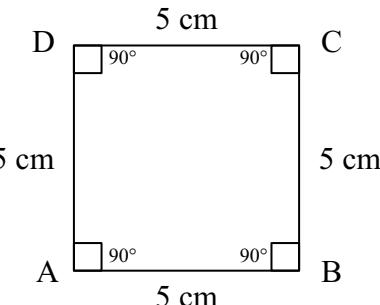
3 4 cm

Sol: * Draw a line m AB = 4cm.

- * Draw an angle of 90 m A point.
- * Draw an angle of 90 on B point.
- * Draw an are of 4cm on C point.
- * Joint point A and C with D.
- * Hence: \square ABCD is required square.

Perimeter of square.

$$\text{Perimeter} = 4 \times 4$$


$$\text{Perimeter} = 16 \text{ cm}$$

$$= 4 + 4 + 4 + 4 = 16 \text{ cm}$$

4 5 cm

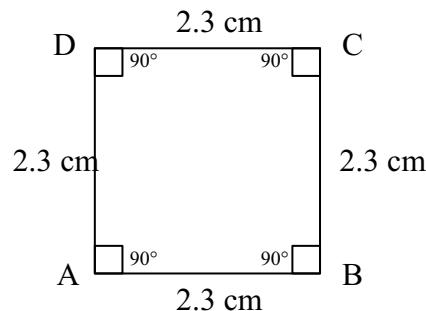
Sol: * Draw a line m AB = 5cm.

- * Draw an angle of 90 m A point.
- * Draw an angle of 90 on B point.
- * Draw an are of 5cm on C point.
- * Joint point A and C with D.
- * Hence: \square ABCD is required square.

Perimeter of square.

$$\text{Perimeter} = 4 \times 5$$

$$\text{Perimeter} = 20 \text{ cm}$$

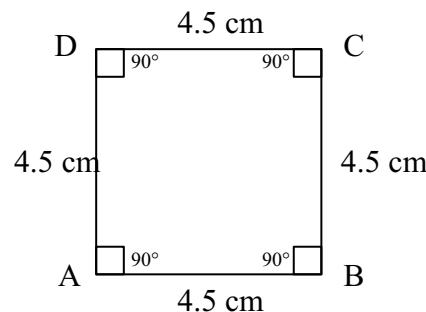

$$= 5 + 5 + 5 + 5 = 20 \text{ cm}$$

5 2.3 cm

Sol: * Draw a line m AB = 2.3cm.

- * Draw an angle of 90 m A point.
- * Draw an angle of 90 on B point.
- * Draw an are of 2.3cm on C point.
- * Joint point A and C with D.
- * Hence: \square ABCD is required square.

Perimeter of square.


$$\text{Perimeter} = 4 \times 2.3$$

$$\text{Perimeter} = 9.2 \text{ cm}$$

$$= 2.3 + 2.3 + 2.3 + 2.3 = 9.2 \text{ cm}$$

6 4.5 cm

Sol: * Draw a line segment AB = 4.5 cm.
 * Draw an angle of 90° at A point.
 * Draw an angle of 90° at B point.
 * Draw an arc of 4.5 cm at C point.
 * Joint point A and C with D.
 * Hence: □ ABCD is required square.

Perimeter of square.

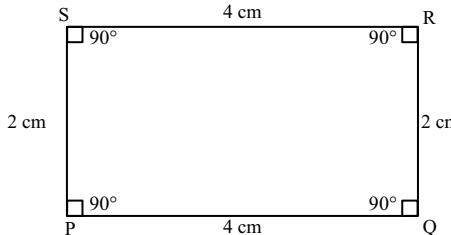
$$\text{Perimeter} = 4 \times 4.5$$

$$\text{Perimeter} = 18 \text{ cm}$$

$$= 4.5 + 4.5 + 4.5 + 4.5 = 18 \text{ cm}$$

ii Construct rectangle and find the perimeter.

1 l = 4 cm, w = 2 cm


Sol: * Draw a line segment of 4 cm on P and Q.

* Draw an angle of 90° on P and also on Q.

* Draw a line segment of 2 cm on QS and m PQ

* Joint point R with S.

* Hence: □ PQRS is required square.

Perimeter of rectangle = 2 x (length + width)

Perimeter of rectangle = 2 (L + W)

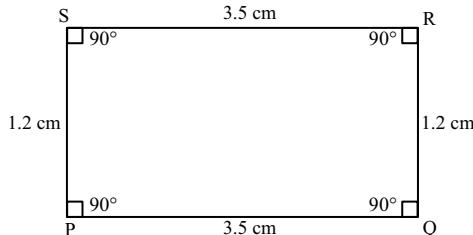
Perimeter of rectangle = 2 (4 + 2)

Perimeter of rectangle = 2 x 6

Perimeter of rectangle = 12 cm

Perimeter of rectangle = 4 + 2 + 4 + 2 = 12 cm

2 l = 3.5 cm w = 1.2 cm


Sol: * Draw a line segment of 3.5 cm on P and Q.

* Draw an angle of 90° on P and also on Q.

* Draw a line segment of 1.2 cm on QS and m PQ

* Joint point R with S.

* Hence: □ PQRS is required square.

Perimeter of rectangle = $2 \times (\text{length} + \text{width})$

Perimeter of rectangle = $2 (L + W)$

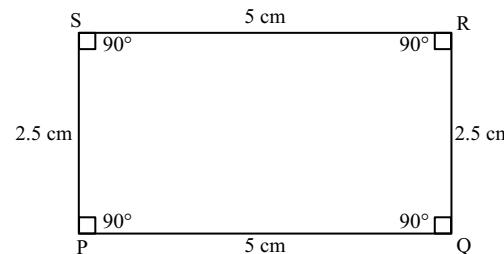
Perimeter of rectangle = $2 (3.5 + 1.2)$

Perimeter of rectangle = 2×4.7

Perimeter of rectangle = 9.4 cm

Perimeter of rectangle = $3.5 + 1.2 + 3.5 + 1.2 = 9.4 \text{ cm}$

3 l = 5cm, w = 2.5


Sol: * Draw a line segment of 5cm on P and Q.

* Draw an angle of 90 on P and also on Q.

* Draw a line segment of 2.5cm m \overline{QS} and m \overline{PQ}

* Joint point R with S.

* Hence: $\square PQRS$ is required square.

Perimeter of rectangle = $2 \times (\text{length} + \text{width})$

Perimeter of rectangle = $2 (L + W)$

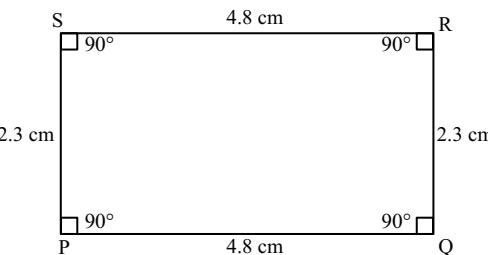
Perimeter of rectangle = $2 (5 + 2.5)$

Perimeter of rectangle = 2×7.5

Perimeter of rectangle = 15 cm

Perimeter of rectangle = $5 + 2.5 + 5 + 2.5 = 15 \text{ cm}$

4 l = 4.8 cm, w = 2.3 cm


Sol: * Draw a line segment of 4.8cm on P and Q.

* Draw an angle of 90 on P and also on Q.

* Draw a line segment of 2.3cm m \overline{QS} and m \overline{PQ}

* Joint point R with S.

* Hence: $\square PQRS$ is required square.

Perimeter of rectangle = $2 \times (\text{length} + \text{width})$

Perimeter of rectangle = $2 (L + W)$

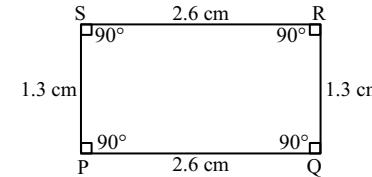
Perimeter of rectangle = $2 (4.8 + 2.3)$

Perimeter of rectangle = 2×7.1

Perimeter of rectangle = 14.2 cm

Perimeter of rectangle = $4.8 + 2.3 + 4.8 + 2.3 = 14.2 \text{ cm}$

5 l = 2.6 cm, w = 1.3 cm


Sol: * Draw a line segment of 2.6cm on P and Q.

* Draw an angle of 90 on P and also on Q.

* Draw a line segment of 1.3cm m \overline{QS} and m \overline{PQ}

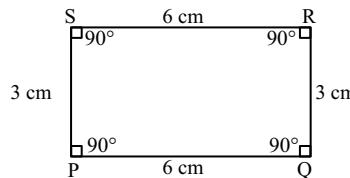
* Joint point R with S.

* Hence: $\square PQRS$ is required square.

Perimeter of rectangle = $2 \times (\text{length} + \text{width})$

Perimeter of rectangle = $2 \times (L + W)$

Perimeter of rectangle = $2 \times (2.6 + 1.3)$


Perimeter of rectangle = $2 \times (3.9)$

Perimeter of rectangle = 7.8

Perimeter of rectangle = $2.6 + 1.3 + 2.6 + 1.3 = 7.8 \text{ cm}$

6 l = 6 cm, w = 3cm.

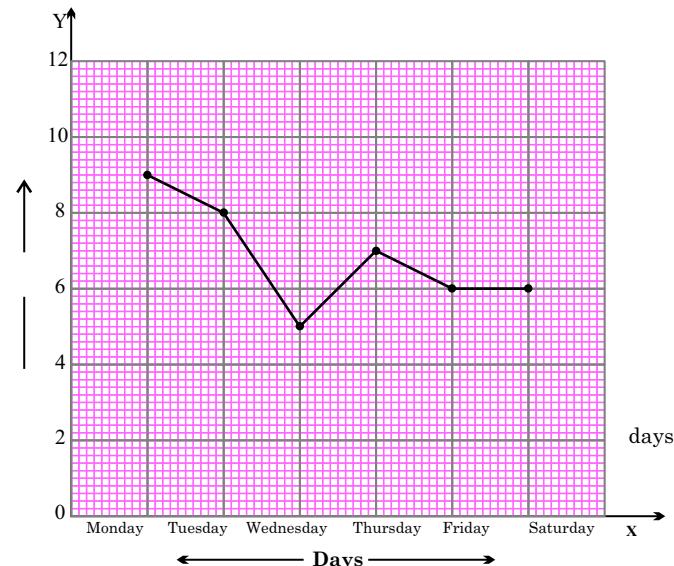
Sol: * Draw a line segment of 6cm on P and Q.
 * Draw an angle of 90 on P and also on Q.
 * Draw a line segment of 3cm m \overline{QS} and m \overline{PQ}
 * Joint point R with S.
 * Hence: $\square PQRS$ is required square.

Perimeter of rectangle = $2 \times (\text{length} + \text{width})$

Perimeter of rectangle = $2 (L + W)$

Perimeter of rectangle = $2 (6 + 3)$

Perimeter of rectangle = 2×9

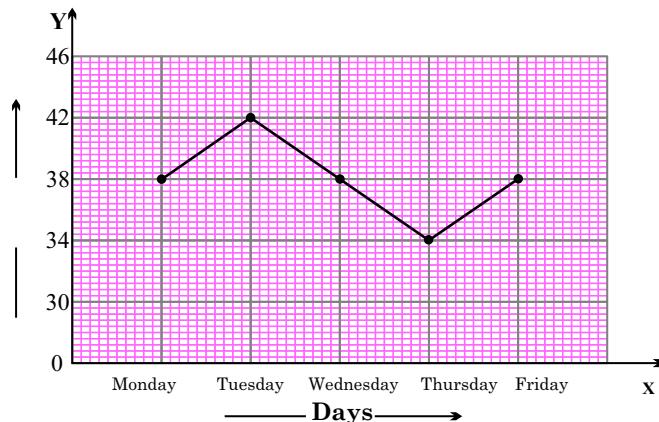

Perimeter of rectangle = 18 cm

Perimeter of rectangle = $6 + 3 + 6 + 3 = 18 \text{ cm}$

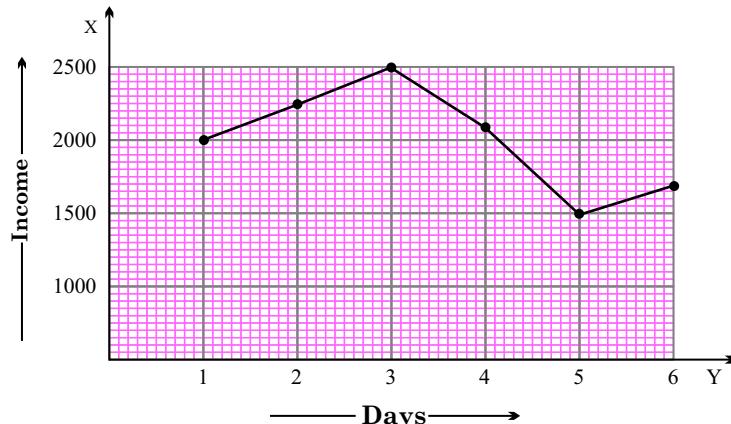
Information Handling:

When numbers are shown on graph paper to find out the information of given materials is called information handling.

For example. The regularity of a student is obtained from its graph, If he goes regularly or not, then live goes up or the regularity of a student is shown in given graph, in which line ox is on long ontal axis and o y is verticle axis.

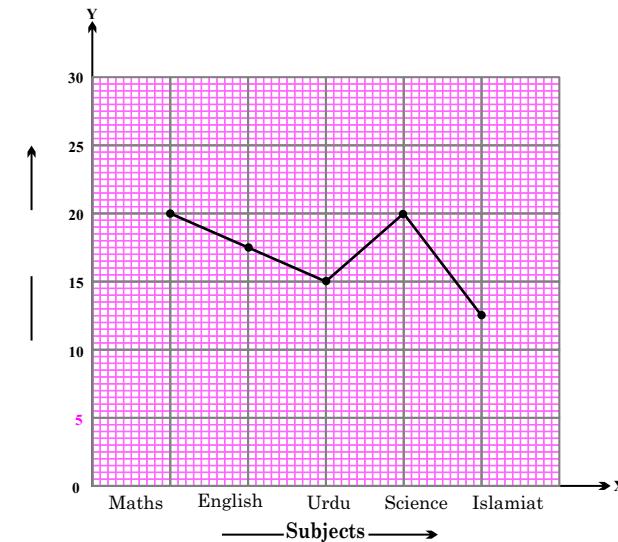


The teacher can find the regularity of student watch the graph.


Days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Presence	9	8	5	7	6	6

Activity:

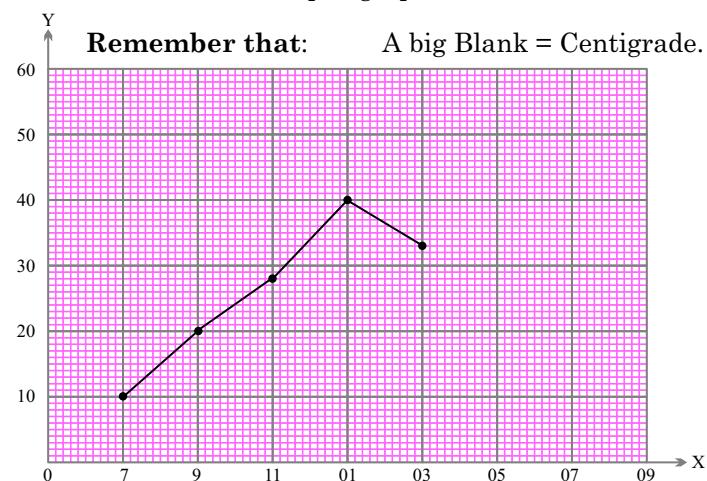
The rate of sugar in Lahore city is shown in line graph, when live ox shows the days which ox shows the rate of sugar. Now complete date.



The weekly income of a shopkeeper is shown in graph. Read it and complete the data.

Activity:

Muhammad Aslam gave test of five subject his marks are shown in graph, Read the graph and complete the data. Line ox shows the subject and oy shows the marks.

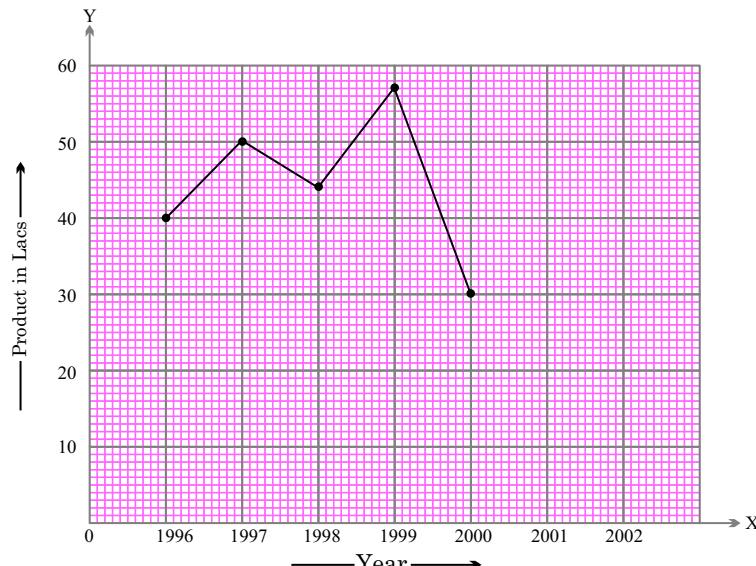


Line graph:

It shows increasing or decreasing of quantity. In this graph any one thing is shown on different times and numbers.

Example:

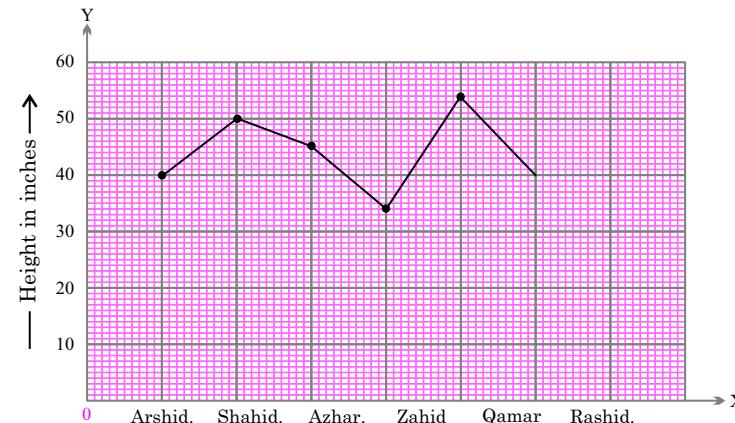
The temperature of a city from morning to 5 of evening is shown, Give the answers with the help of graph.



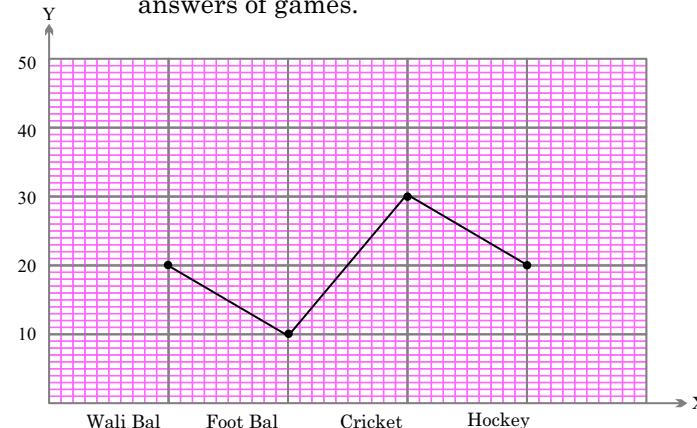
i On what time temperature was low? 7 a.m
 ii On what time temperature was high? 19.m
 iii How much temperature was on 3:00? 38°C
 iv On what time was higher 11:00 clock or 9:00 clock? 9Clock.

EXERCISE 7.1

1 The product of wheat is shown in graph, read the graph carefully and give the answers of questions (scale = Big Blank = 10 Lac)


i In which year product was less? 2000
 ii In which year product was much? 1999, (75 lacs)

iii Different in much product and less product. 17 lacs
 iv What was product in 1996. 40 lacs
 v What was product in 1997 and 1999. 90 lacs


2 The height of Boys in shown in inches, Read the graph carefully and give the answers of these Questions.
 (Scale = A big Blank = 10 inch)

i Who is heighest boy and whose height is Qamar, (54 inches)
 ii Whose in little Boy and its height is Zahid
 iii How Rashid is long? 40 inches

iv How much Azhar is longer than Rashid? 6 inches
 v How much Zahid is longer than Shahid? 24 inches
 vi How much Qamar is longer than Azhar? 10 inches

3 The students of fourth class participate in games. Give the answers of games.

i How many students did play hockey. 20 students

ii How many students did play cricket. 30 students

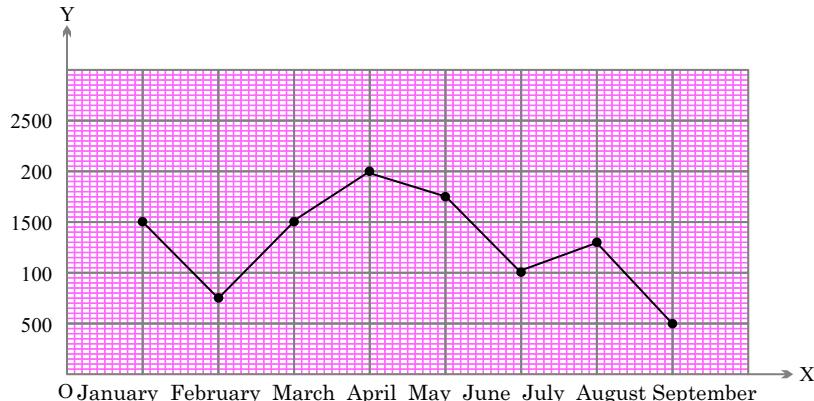
iii What game was played in much? Cricket

iv Tell the number of volleyball and football players. 30 players

v How many football players were there? 10 players

4 There is a line graph of weight of 6 boys. By watching this, give the answers of following questions:

i Who is the heaviest boy than all? Aamir

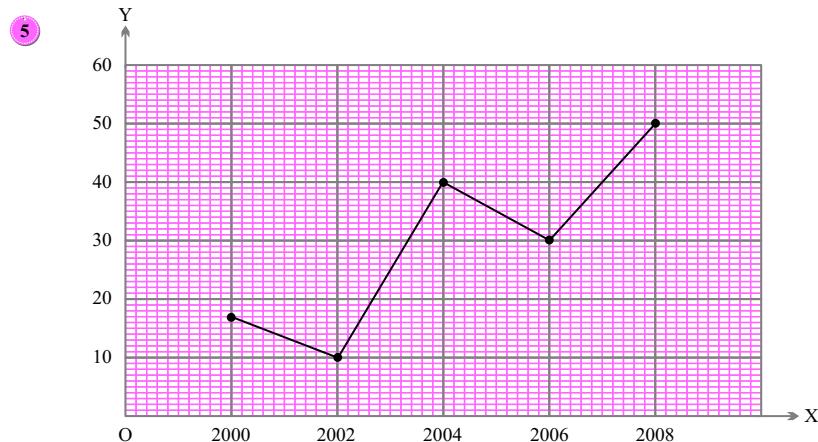

ii How much is the weight of Danish 46 kg

iii Who is the highest boy than all? Aamir

iv What is the difference between the weight of Farooq and weight Aamir. 16 kg

v Who is the heavier between Umar and Aamir. Aamir

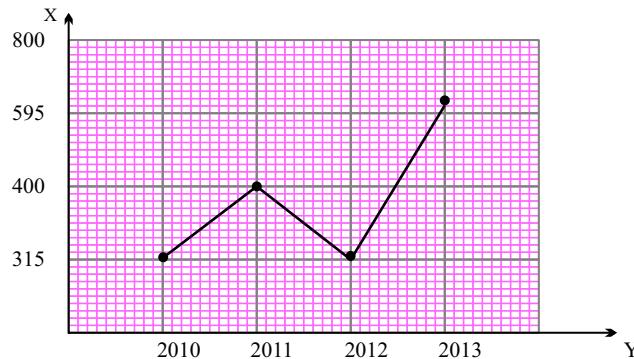
2 The line graph of January to August of Aisha's saving is given below. Give the answers of the given questions.


i In which month the saving of Aisha was low? April

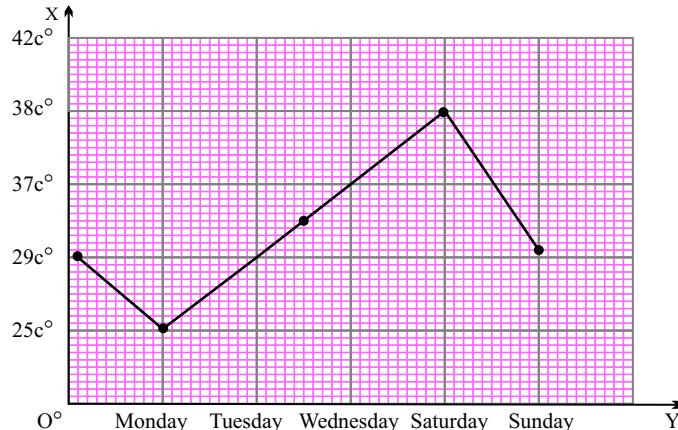
ii How much Aisha saved her saving in February? 700

iii What is the saving of July and August? 1800

iv In which months, the saving of Aisha was the most? April


v What is the saving of the month of March? 1500

i How many schools were in 2000? 16 Schools
 ii How many schools were in 2004? 40 Schools
 iii In which year schools were more? 2008
 iv In which year schools were less? 2002
 v How many schools were in 2006? 30 Schools


6 Show the yearly product of shoes in a factory.

Year	2010	2011	2012	2013
Number of shoes	400	595	315	800

7 Show the temperature of different days in Lahore.

Days	Wednesday	Tuesday	Monday	Sunday	Saturday
Temperature	37° C	25° C	29° C	38° C	42° C

ANSWERS:

EXERCISE 1.1

i 1 Three million, one hundred fifty two thousand five hundred sixty seven. 2 Three million, five hundred fifty thousand, Twelve.
 3 Four million, one hundred forty four thousand, seven hundred fifty two. 4 Five million six hundred seventy seven thousand, five hundred twenty six.
 5 Eight hundred two thousand, two hundred ninety five. 6 Nine hundred fifty two thousand four hundred fifty two.
 7 Six million, seven hundred eighty five thousand, eight hundred twelve. 8 Eight million, seven hundred twenty five thousand, one hundred thirty eight.
 9 Seven hundred twenty nine thousand, six hundred sixteen. 10 Three million, four hundred forty thousand, twenty one.
 11 Eight million, four hundred thirty one thousand nine hundred one. 12 Six hundred seventy Nine Thousand five hundred fifty two.
 ii 1 11,250,901 2 4 439 400 3 386 899 4 4 463 204
 5 12 901 6 62 478 7 2,000,201 8 48 921 035
 9 4,215,402 10 1,461,000
 iii 1 5000 2 400000 3 3000000 4 70000
 5 500 6 5 7 20 8 400000
 9 50000 10 3000 11 50000 12 9000

EXERCISE 1.2

i 1 9575921 2 11505790 3 1258952 4 125923
 5 1510792 6 895230 7 1331032 8 1335992
 9 13390221 10 13355102 11 1210221 12 1032502
 ii 1 124798 2 102243 3 5678910 4 3020607
 5 112234 6 459578 7 778899 8 175060
 iii 1 95921 2 89521 3 186455 4 928259
 5 513929 6 352881 7 153922 8 935921
 9 193925 10 358125 11 165929 12 959521
 iv 1 567809 2 7890 3 12679 4 19450
 5 44347 6 89765 7 34567 8 45678
 v 1 XL 2 LXIX 3 XXVI 4 LXXIX
 5 L 6 XXXVII 7 XXX 8 LXXIV
 9 LXV 10 LXXI 11 XCIX 12 C

EXERCISE 2.1

i

1. $24 = 1, 2, 3, 4, 6, 8, 12, 24$ 2. $36 = 1, 2, 3, 4, 6, 9, 12, 18, 36$
 3. $48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48$ 4. $81 = 1, 3, 9, 27, 81$
 5. $60 = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60$ 6. $75 = 1, 3, 5, 15, 25, 75$
 7. $66 = 1, 2, 3, 6, 11, 22, 33, \dots$ 8. $69 = 1, 3, 23, 69$
 9. $49 = 1, 7, 49$
 10. $96 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96$

ii. 4 5 6 9 10 12 13 iii. 1 3 5 7 10 11 14 15

iv. 1. Division or by 2 and 3 2. Division or by 5 and 3
 3. Division or by 2 and 3 4. Division or by 2 and 5
 5. Division or by 3 and 5 6. Division or by 2 and 3.
 7. Division or by 2 and 3 8. Division or by 2 and 3.
 9. Division or by 2 and 3 10. Division or by 2 and 5
 11. Division or by 5 12. Division or by 3
 13. Division or by 2 and 5

EXERCISE 2.2

i. Prime numbers 771, 223, 19, 17, 131, 129, 71
 Compound numbers 68, 12, 100, 21, 91, 85, 64

ii. 1. $2 \times 2 \times 2 \times 3$ 2. $2 \times 2 \times 3 \times 3$ 3. $2 \times 2 \times 2 \times 2 \times 3$
 4. $3 \times 3 \times 3 \times 3$ 5. $2 \times 2 \times 3 \times 5$ 6. $3 \times 5 \times 5$
 7. $2 \times 2 \times 149$ 8. $3 \times 3 \times 5 \times 7$ 9. $2 \times 2 \times 2 \times 2 \times 5 \times 5$
 10. $2 \times 2 \times 31$ 11. $2 \times 2 \times 173$ 12. 11×11
 13. $2 \times 2 \times 2 \times 2 \times 3 \times 5$ 14. $3 \times 3 \times 7 \times 13$ 15. 3×11

iii. 1. $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ 2. $3 \times 5 \times 7$ 3. $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7$
 4. $2 \times 2 \times 2 \times 5 \times 3$ 5. $3 \times 5 \times 5 \times 5$ 6. 13×13
 7. $2 \times 2 \times 2 \times 3 \times 3$ 8. $2 \times 2 \times 2 \times 2 \times 3 \times 3$ 9. $2 \times 2 \times 2 \times 2 \times 2 \times 3$
 10. $2 \times 2 \times 3 \times 3$ 11. $2 \times 2 \times 2 \times 2 \times 2 \times 2$ 12. 2×11
 13. $2 \times 2 \times 3 \times 3$ 14. $2 \times 3 \times 7$ 15. $2 \times 2 \times 11$

EXERCISE 2.3

1. 30 2. 25 3. 5 4. 5 5. 24 6. 11 7. 14
 8. 12 9. 24 10. 9 11. 24 12. 11 13. 15 14. 21
 15. 10 16. 25 17. 12 18. 35 19. 27 20. 17

EXERCISE 2.4

1. 49 2. 60 3. 19 4. 13 5. 9 6. 24 7. 48
 8. 24 9. 18 10. 36 11. 5 12. 7 13. 60 14. 24
 15. 11 16. 48 17. 9 18. 49 19. 19 20. 48 21. 54
 22. 24 23. 7 24. 13

EXERCISE 2.5

1. 60 2. 900 3. 48 4. 64 5. 586 6. 66 7. 120
 8. 525 9. 90 10. 88 11. 784 12. 432 13. 210 14. 648
 15. 48 16. 360

EXERCISE 2.6

1. 252 2. 1800 3. 2079 4. 144 5. 168 6. 2160 7. 360
 8. 510 9. 9450 10. 1620 11. 76 12. 240 13. 520 14. 264
 15. 1872 16. 150 17. 700 18. 96 19. 910 20. 2000 21. 1360

EXERCISE 2.7

1. 48 2. 78 3. 7 4. 12 5. 9 6. 7 7. 15
 8. 72

EXERCISE 3.1

i. 9, 15, 1, 7, 11, 4, 3, 8, 21, 35, 9, 13, 7, 2
 ii. 4, 3, 15, 19, 1, 2, 1 16, 4, 6, 17
 iii. 1. $2 \frac{15}{13}$ 2. $3 \frac{2}{3}$ 3. $1 \frac{4}{6}$ 4. $2 \frac{1}{10}$ 5. $1 \frac{2}{7}$ 6. $1 \frac{6}{24}$
 7. $2 \frac{1}{3}$ 8. $1 \frac{2}{3}$ 9. $3 \frac{1}{4}$ 10. $2 \frac{3}{9}$ 11. $1 \frac{8}{7}$ 12. $4 \frac{2}{4}$
 13. $3 \frac{1}{6}$ 14. $1 \frac{4}{21}$

EXERCISE 3.2

i **1** $\frac{12}{13}, \frac{24}{26}, \frac{36}{39}, \frac{48}{52}, \frac{60}{65}$ **2** $\frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}$
3 $\frac{2}{4}, \frac{4}{8}, \frac{6}{2}, \frac{8}{16}, \frac{10}{20}$ **4** $\frac{5}{11}, \frac{10}{22}, \frac{15}{33}, \frac{20}{44}, \frac{25}{55}$
5 $\frac{3}{9}, \frac{6}{18}, \frac{9}{27}, \frac{12}{36}, \frac{15}{45}$ **6** $\frac{1}{7}, \frac{2}{14}, \frac{3}{21}, \frac{4}{28}, \frac{5}{35}$
7 $\frac{3}{12}, \frac{6}{24}, \frac{9}{36}, \frac{12}{48}, \frac{15}{60}$ **8** $\frac{2}{14}, \frac{4}{28}, \frac{6}{42}, \frac{8}{56}, \frac{10}{70}$
9 $\frac{10}{9}, \frac{20}{18}, \frac{30}{27}, \frac{40}{36}, \frac{50}{45}$ **10** $\frac{7}{8}, \frac{14}{16}, \frac{21}{24}, \frac{28}{32}, \frac{35}{40}$
11 $\frac{7}{2}, \frac{4}{14}, \frac{6}{21}, \frac{8}{28}, \frac{10}{35}$ **12** $\frac{9}{15}, \frac{18}{30}, \frac{27}{45}, \frac{36}{60}, \frac{45}{75}$

ii **1** $\frac{1}{3}$ **2** $\frac{2}{6}$ **3** $\frac{2}{4}$ **4** $\frac{6}{12}$ **5** $\frac{1}{3}$ **6** $\frac{2}{6}$
7 $\frac{5}{10}$ **8** $\frac{1}{2}$

EXERCISE 3.3

i **1** $\frac{1}{3}$ **2** $\frac{1}{5}$ **3** $\frac{5}{3}$ **4** $\frac{1}{2}$ **5** $\frac{1}{2}$ **6** $\frac{5}{7}$
7 $\frac{3}{4}$ **8** $\frac{7}{4}$ **9** $\frac{7}{9}$ **10** $\frac{1}{3}$ **11** $\frac{1}{7}$ **12** $\frac{6}{5}$

ii **1** $\frac{5}{6}$ **2** $\frac{1}{4}$ **3** $\frac{9}{2}$ **4** $\frac{6}{12}$ **5** $\frac{3}{3}$ **6** $\frac{1}{9}$
7 $\frac{12}{9}$ **8** $\frac{27}{81}$

iii **1** $\frac{2}{5}$ **2** $\frac{3}{7}$ **3** $\frac{1}{9}$ **4** $\frac{1}{6}$ **5** $\frac{11}{20}$ **6** $\frac{7}{6}$
7 $\frac{6}{3}$ **8** $\frac{8}{82}$

iv **1** $<$ **2** $<$ **3** $>$ **4** $<$ **5** $<$ **6** $>$
7 $>$ **8** $<$

EXERCISE 3.4

1 $4\frac{10}{12}$ **2** $\frac{1}{2}$ **3** $1\frac{1}{18}$ **4** $\frac{11}{16}$ **5** 4 **6** $1\frac{1}{20}$
7 $1\frac{1}{12}$ **8** $1\frac{1}{30}$ **9** $\frac{17}{24}$ **10** $6\frac{5}{6}$ **11** $3\frac{19}{36}$ **12** $1\frac{17}{20}$

EXERCISE 3.5

1 $1\frac{11}{24}$ **2** $5\frac{22}{33}$ **3** $\frac{13}{35}$ **4** $\frac{19}{20}$ **5** $\frac{1}{6}$ **6** $3\frac{1}{4}$
7 $\frac{3}{8}$ **8** $\frac{1}{2}$ **9** $\frac{41}{56}$ **10** $\frac{7}{12}$ **11** $\frac{13}{24}$ **12** $\frac{11}{20}$

EXERCISE 3.6

1 $\frac{32}{63}$ **2** $\frac{876}{415}$ **3** $\frac{8}{75}$ **4** $\frac{2}{3}$ **5** $\frac{893}{40}$ **6** $\frac{4}{5}$
7 27 **8** 33 **9** $\frac{68}{15}$ **10** 6 **11** $\frac{1}{3}$ **12** $\frac{45}{4}$

EXERCISE 3.7

1 $\frac{30}{7}$ **2** 18 **3** 1 **4** 12 **5** $\frac{306}{133}$ **6** $\frac{20}{3}$
7 $\frac{4}{3}$ **8** 1 **9** $\frac{3}{2}$ **10** $\frac{21}{20}$ **11** $\frac{5}{7}$ **12** $\frac{1}{6}$

EXERCISE 3.8

1 $5\frac{21}{40}$ **2** $1\frac{7}{8}$ **3** $2\frac{6}{12}$ **4** $3\frac{3}{20}$
5 $\frac{5}{8}$ **6** $\frac{3}{4}$

EXERCISE 4.1

1 **1** $= 100 = 1 = 0.1$ **2** $7 = 700 = 2 = 0.2$
 $1 = 10 = 2 = 0.02$ $8 = 80 = 4 = 0.04$
 $5 = 5 = 1 = 0.001$ $7 = 7 = 5 = 0.005$

3 $9 = 900 = 0 = 0.0$ **4** $7 = 400 = 2 = 0.2$
 $1 = 10 = 5 = 0.05$ $7 = 70 = 1 = 0.01$
 $8 = 8 = 6 = 0.006$ $9 = 9 = 5 = 0.005$

5 $8 = 800 = 0 = 0.0$ **6** $1 = 100 = 4 = 0.4$
 $1 = 10 = 7 = 0.07$ $0 = 00 = 3 = 0.03$
 $5 = 5 = 6 = 0.06$ $5 = 5 = 7 = 0.007$

7 $1 = 100 = 0 = 0.0$ **8** $2 = 20 = 1 = 0.2$
 $5 = 50 = 5 = 0.05$ $4 = 4 = 5 = 0.05$
 $2 = 2 = 2 = 0.002$ $= 2 = 0.002$

ii	1	$\frac{1752}{1000}$	2	$\frac{31507}{100}$	3	$\frac{5924152}{10000}$	4	$\frac{715235}{1000}$
	5	$\frac{45002}{1000}$	6	$\frac{398347}{1000}$	7	$\frac{315415}{1000}$	8	$\frac{219195}{1000}$
iii	1	0.159	2	0.07	3	0.0215	4	1.989
	5	0.045	6	0.02				

EXERCISE 4.2

i	1	5.24	2	74.559	3	911.57	4	609.002
	5	988.847	6	34.517	7	1406.161	8	645.36
	9	434.565	10	124.87	11	5.067	12	5.401
ii	1	297.988	2	4.496	3	561.46	4	33.144
	5	170.421	6	4.107	7	41.56	8	11.24
	9	5.86	10	169.718	11	0.117	12	6.88

EXERCISE 4.6

1	206.164	2	90.15	3	12.375	4	4.68
5	16.27	6	560.48	7	28.12	8	3796.1
9	2.937	10	667.6	11	3.105	12	142.5
13	506.52	14	154	15	280.28		

EXERCISE 4.4

1	35.32	2	827.3	3	107.05	4	1283.9
5	109.8	6	3.06	7	152.06	8	1.574
9	9	10	2103.09	11	2.22	12	9.1
13	24.08	14	3.05	15	303.6		

EXERCISE 4.5

1	93.54 Rupees	2	10.25 Rupees	3	0.418	4	579.90 Rupees
5	605.12 Rupees	6	13.9 Meters	7	2.68 Grams	8	245.05 Rupees
9	3.928 Meters	10	36.15 Rupees	11	341.92 Rupees	12	86 Rupees

EXERCISE 5.1

i	1	1455000 Meters	2	135000 Meters	3	479015 Meters	4	315020 Meters	
	5	415030 Meters	6	29071 Meters					
ii	1	4 Meters	91 Centimeter	2	8 Meters	10 Centimeter	3	5 Meters	55 Centimeter
	4	1 Meters	71 Centimeter	5	9 Meters		6	7 Meters	71 Centimeter

iii	1	76 Millimeter	2	107 Millimeter	3	82 Millimeter	4	153 Millimeter
	5	163 Millimeter	6	174 Millimeter				

iv	1	13 Meters	6	Centimeter	2	96 Meters	32	Centimeter
	3	162 Kilometer	86	Meters	4	24 Kilometer	215	Meters
	5	154 Meters	23	Millimeter	6	406 Kilometer	17	Meters
	7	7 Meters	5	Centimeter	8	189 Kilometer	87	Meters

EXERCISE 5.2

1	9 Meters	1 Decimeter	2	2 Kilometer	05 Meters	3	3 Meters	6 Centimeter
4	8 Kilogram	14 Meter	5	7 Kilogram	1 Meter	6	1 Centimeter	2 Millimeter
7	122 Centimeter	9 Millimeter	8	3 Meter	8 Decimeter	2 Centimeter		
9	377 Kilogram	3 Meter	10	180 Kilogram	98 Meter	11	10 Kilogram	64 Meter
12	70 Kilogram	55 Meter	13	205 Kilogram	2 Meter	14	544 Kilogram	75 Meter

EXERCISE 5.3

1	61 Kilogram	59 Gram	2	322 Kilogram	71 Gram	3	619 Kilogram	22 Gram
4	40 Kilogram	51 Gram	5	37 Kilogram	969 Gram	6	16 Kilogram	8 Gram
7	129 Kilogram	64 Gram	8	114 Kilogram	27 Gram	9	881 Kilogram	64 Gram
10	135 Kilogram	75 Gram	11	1038 Kilogram	46 Gram	12	124 Kilogram	26 Gram
13	735 Kilogram	82 Gram	14	114 Kilogram	77 Gram			

EXERCISE 5.4

1	17 Kilogram	95 Gram	2	8 Kilogram	2 Gram	3	152 Kilogram	1 Gram
4	1 Kilogram	11 Gram	5	2 Kilogram	7 Gram	6	16 Kilogram	26 Gram
7	5 Kilogram	674 Gram	8	18 Kilogram	405 Gram	9	243 Kilogram	2 Gram
10	55 Kilogram	915 Gram						

EXERCISE 5.5

i) 1 72 Liter 185 Milliliter 2 64 Liter 867 Milliliter
4 170 Liter 769 Milliliter 5 70 Liter 578 Milliliter
7 114 Liter 377 Milliliter 8 95 Liter 662 Milliliter
10 49 Liter 466 Milliliter 11 84 Liter 567 Milliliter

ii) 1 3 Liter 875 Milliliter 2 11 Liter 114 Milliliter
4 26 Liter 74 Milliliter 5 19 Liter 681 Milliliter
7 4 Liter 908 Milliliter 8 10 Liter 678 Milliliter
10 3 Liter 98 Milliliter 11 26 Liter 895 Milliliter

